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Time series forecasting is an important research field in machine learning. Since the literature shows
several techniques for the solution of this problem, combining outputs of different models is a simple
and robust strategy. However, even when using combiners, the experimenter may face the following
dilemma: which technique should one use to combine the individual predictors? Inspired by classifi-
cation and pattern recognition algorithms, this work presents a dynamic selection method of forecast
combiners. In the dynamic selection, each test pattern is submitted to a certain combiner according to a
nearest neighbor rule. The proposed method was used to forecast eight time series with chaotic behavior
in short and long term. In general, the dynamic selection presented satisfactory results for all datasets.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Time Series Forecasting (TSF) is one of the most traditional
problems in statistics and machine learning. In this kind of pro-
blem, past values of a given measurement are collected and sub-
sequently used in forecasting future values. Over the years, various
machine learning techniques have been used for this purpose, e.g.
Artificial Neural Networks (ANN) [1], Support Vector Machines
(SVM) [2], fuzzy logic techniques [3] and hybrid systems of some
of these techniques with evolutionary computation [4] or swarm
intelligence [5]. Although older, statistical models are still studied
and used with satisfactory results. Among these predictors, one
can find linear models such as ARMA (Autoregressive Moving
Average) and ARIMA (Autoregressive Integrated Moving Average)
[6], and non-linear, as ARCH (Autoregressive Conditional Hetero-
scedasticity) and GARCH (Generalized ARCH) [7]. Literature shows
various real-world applications of TSF in several areas of human
activity: energy [8], financial market [9], meteorology [10], epi-
demiology [11], space weather [12], traffic control [13], seismic
activity [14] and so on.

An important class of time series is the so-called chaotic time
series. Chaos theory is the mathematical research field that studies
the behavior of chaotic dynamical systems [15]. Dynamic systems
are highly sensitive to initial conditions, being this property po-
pularly known as butterfly effect. Time series based on chaotic
dynamic systems are an important dataset for benchmark models
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and practical applications such as signal processing [16], astron-
omy [17] and biomedicine [18].

Given to the wide variety of techniques for time series fore-
casting, the question of which one to use naturally emerges in the
early stages of the problem resolution. In addition, taking into
account the no-free-lunch theorem [19], there is no guarantee that
a particular model has good performance in all or even more than
one dataset category. A possible solution to this scenario is the
forecast combination. Forecast combination has been used effec-
tively since the seminal work of Bates and Granger [20]. Simple
statistical measures can be used to combine forecasts generated by
an ensemble of different models, such as average, median or
trimming average [21]. More sophisticated models can be used to
combine the ensemble outputs, since statistical combiners do not
work when the predictors have similar performances [22]. More-
over, the combination may also be performed in a non-linear
fashion as seen in the work of Adhikari and Agrawal [23] and
Gheyas and Smith [24]. The foundation for the use of non-linear
combiners is the fact that linear combiners only consider in-
dividual contributions from each predictor, but not their
relationship.

Although the use of combiners normally improves substantially
the performance of individual predictors, the great amount of
available methods raises a fundamental question: which combiner
should one use? There is no formal indication of what methods are
best in what situations. The answer to this question may lie in the
dynamic selection. The dynamic selection is an emerging area in
machine learning, with many papers published in recent years (a
survey of the main contributions can be seen in [25]). In most
cases, dynamic selection is used in classification and pattern re-
cognition problems. In general, the procedure for dynamic
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selection can be shortened in three stages: generation, selection
and integration. In generation, a set (or ensemble) of classifiers is
generated. In selection, a subset of these classifiers is dynamically
selected according to some criteria. Finally, in the integration
phase, a final decision is made in respect to which selected clas-
sifiers will be used for the classification of a particular input
pattern.

This paper proposes a method of dynamic selection of forecast
combiners. Due to their importance in benchmarking and in hu-
man activities, time series with chaotic behavior were used as
dataset in the experiments, for short and long term prediction.
Four models were used as predictors in the generation phase of
dynamic selection: a feedforward neural network with one hidden
layer, a feedforward neural network with two hidden layers, a DBN
(Deep Belief Network) [26] and an SVR (Support Vector Regres-
sion) [27]. Average, median and the softmax function were used as
combiners. The details of the proposed dynamic selection will be
explained in the following sections. It is important to note that
there is no work in the literature that deals with the dynamic
selection of forecast combiners in a similar way. Another im-
portant point is that the built method is independent of the in-
dividual models and selected combiners, being a framework for
dynamic selection.

This work is organized as follows: Section 2 is a review of the
main and the latest methods of combining predictors. Section 3
shows how dynamic selection can improve the performance of
individual models. Section 4 presents the proposed method of
dynamic selection of forecast combiners. Section 5 describes the
experiments. Section 6 shows the results of the experiments, fol-
lowed by discussion. Finally, Section 7 presents the conclusions
and proposals for future work.

2. Time series forecast combination

The instability of a given predictor can be mitigated when an
ensemble is used to generate the final prediction, since mistakes
can be smoothed. A theoretical justification for the forecast com-
bination from a Bayesian model can be seen in [28].

The simplest way to combine predictions is the linear combination
A Al )

of the predictors. Let Y = {y;, ¥, ..., Jy } and }A’m = {J’1 Wy

be the actual time series and the forecasts from the ith method, re-
spectively. According to [22], the time series obtained from a linear
combination of these n series is provided by the Eq. (1):
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where w; is the weight associated to the ith forecasting method. The
weights usually add up to unity, avoiding bias.

In general, the existing methods of linear combination in lit-
erature vary in how these weights are calculated. Some of these
combinations are performed with a simple arithmetic calculation
on all or some of the individual forecasts. This applies to the
simple average in which equal weights are assigned to all models,
i.e, w,=1/n@ =1, 2, ..., n). Although simple, this combination has
proven to be a very robust method, sometimes used as a minimum
performance measure for more sophisticated combiners. Similarly,
the combination can be made with other statistical measures, such
as median, maximum or minimum value.

Andrews et al. used the average to combine the predictions of
an ensemble consisting of neural networks and Gaussian and

linear regression models, in a competition time series [29]. Also,
Lian et al. combined the outputs of an ensemble of ELM (Extreme
Learning Machines) with an average, trying to predict a landslide
index [30].

The trimming average differs from the simple average in a way
that the arithmetic mean is calculated excluding k% of the worst
performing models. According to [21], the recommended value of
k ranges from 10% to 30%. The use of the trimming average can be
seen in [31]. This combination requires the performance of the
individual models in some validation dataset. This concept is fol-
lowed in the methods known as error-based in which the weights
are chosen inversely proportional to past performance [32] and
outperformance when the weights are calculated according to the
number of times a particular method has been better in the past
[33]. Other combination following this direction is the softmax,
calculated according to Eqgs. (2) and (3):
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where f’ is the reverse of the forecast error in a validation dataset,
f;/ = 1/f; and min(f’) and max(f’) are the minimum and maximum
values of all f'. The use of softmax and median as forecast com-
biners can be seen in [4].

According to [22], statistical combiners do not work when the
predictors have similar performance. Along these combinations
with relatively little computational effort, literature shows some
other methods built with more sophistication. Adhikari, for ex-
ample, proposed a new linear combination that sets the weights
by the analysis of patterns in successive forecasts in a validation
dataset [22]. Nonlinear combinations, although more uncommon,
may also be found. Gheyas and Smith built an ensemble of hybrid
models of neural networks and linear regression called GRNN [24].
The output of several GRNN for each subfeature of the time series
is presented for a second GRNN training. The work of Adhikari and
Agrawal [23] extends the linear combination model of Rodrigues
and Freitas [34] to calculate the weights in a non-linear manner.

An ensemble tends to achieve good results when the models
that comprise it have a good degree of diversity, providing guar-
antees against a limited range [29]. There are several ways to
generate this diversity, such as using different models, different
specifications of the same model, different types of data pre-pro-
cessing and different input variables. The input data, for example,
may undergo a bootstrapping or bagging and cross-validation, as
seen in [35]. Zhang added noise to the input data and formed
distinct training sets [36]. Andrawis et al. pre-processed the time
series, removing the trend [29]. Of course, a combination of these
techniques is possible. That is the case of the work presented in
this article.

It is important to note that combining forecasts is not the only
way to increase the performance of the models. Other approaches
can be considered. One of them can be seen in the work of Crone e
Kourentzes [37]. In this paper, the authors propose a feature se-
lection method in order to automatically set the best configuration
of feedforward neural networks. In the context of time series
forecasting, features selection implies the use of a technique to
choose which lags must be taken into account in the model
training.

The use of multiple datasets can also increase the performance
of the forecasts. In this case, the selection of a particular set can co-
evolve with the construction of the predictor. Mirmomeni e Punch
[38] propose an evolutionary approach to model the dynamics of
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chaotic time series. The population of solutions comprises both the
candidate models and the dataset.

3. Dynamic selection

Consider a classification or prediction problem. Let
C={h, hy, ..., hy} be a set of L experts and E = {ej, ey, ..., ey} be a
set of M ensembles formed from C. The dynamic selection can be
seen as a division of the feature space in K> 1 competence re-
gions, denoted by R, R, ..., Rx. So, for each region R,
j=1,2,..., K, an ensemble from E which has the highest accuracy
in R; is designated. Fig. 1 presents an illustration of the feature
space division into four competence areas.

Let e* € E be the ensemble with the highest average accuracy
over the whole feature space. Denote by P (¢;IR;) the probability of
correct classification by ensemble e; in region R;. Consider e;(;, the
ensemble designated for region R;. The overall probability of cor-
rect classification of the system is described in Eq. (4), where p (R})

is the probability of a pattern X belonging to R;. To maximize p,
e;j must be assigned according Eq. (5)

K K
Pe= Y. PROPR) = Y p(R)P(ei)IRy)
j=1 j=1 @

pEiylR) >pElR), t=1,2,...M 5)

K K
> pR)PeiIR) > Y p(R)P(E*IR;)
j=1 j=1 (6)

From Egs. (4) and (5), (6) shows that the combined scheme
performs equally or better than the best ensemble e*, regardless of
the way the feature space has been partitioned.

As explained above, the dynamic selection process can be
summarized in three steps. The first one is responsible for the
generation of the base experts set, and this set can be formed by
models of the same kind or heterogeneous ones. The diversity of
the experts is important in both cases.

The second phase (selection) is carried out by estimating the
competence of the available models in the set generated in the
first phase, with respect to local regions of the feature space. In the
case of dynamic selection, the model selection is performed for
each test pattern, instead of using the same selection for all of
them (static selection). It is common, for example, to use an NN-

Fig. 1. Partitioning of the feature space in competence regions.

rule based schema to define the neighborhood of an unknown
pattern in the test phase. Britto et al. [25] propose a taxonomy for
the various competence measurements found in literature. Ac-
cording to this taxonomy, the model selection is divided between
the use of measures based on the individual and measures that
combine the accuracy of base experts with any information related
to the interaction between them (group-based). In the first case,
the measures may be based on ranking, accuracy, probability, be-
havior or oracle. Concerning the group-based measurements, it
may be based on diversity, complexity and ambiguity.

The third phase is the integration of the selected models. Lit-
erature shows several ways to accomplish this step. A proposed
taxonomy can be seen in [39].

Literature presented in this section is predominantly applied to
classification and pattern recognition problems. Despite the lack of
work on dynamic selection in time series forecasting, some re-
search with similar bias can be found in literature. Some of these
researches are dealing with model selection. Model selection
means selecting, from the data, a specific model for task comple-
tion. However, in time series forecasting problem, this process is
usually accomplished in a static manner [40].

4. Dynamic selection of forecast combiners

This article proposes a method of dynamic selection of forecast
combiners. In general, the goal of the method is to generate in-
dividual predictors, combine them and select which combination
is most promising for each of the test patterns. At this point, one
must define what a test pattern is.

As explained in previous sections, a time series can be for-
malized as a sequence of random scalar observations
Y= {y, ¥ ..., yy }- The lag of the series is given for the delay used
to form the training and testing patterns. Predicting a time series
involves discovering a future value for the sequence, given by
XAGH = FlY Yicks -+ Yio—nyk)- d is the lag, k is the step lag and F the
used model. Thus, the dimension of the training and testing pat-
terns are directly related to the delay used. The dynamic selection
is, therefore, to select the best combination for each of these
patterns. The proposed method will be explained below, according
to each phase of the dynamic selection, whenever applicable.

4.1. Generation

In the generation of individual predictors, a considerable de-
gree of diversity was obtained through two manners. The first way
was the use of heterogeneous models. The models: a feedforward
neural network with one hidden layer (FANN-1), a feedforward
network with two hidden layers (FANN-2), a Deep Learning neural
network called Deep Belief Network (DBN) with two hidden layers
and a support vector machine for regression (SVR). Four predictors
were used because there is an indication in literature to use up to a
maximum of five models to reduce prediction errors, since more
predictors may decrease dramatically the combination accuracy
[41].

To generate diversity in ensembles composed of neural net-
works, various steps can be taken [42]. One of these mensures is to
use models with different architectures. This is the rationale for
using a neural network with different hidden layers. Training
neural networks with more than one hidden layer came to be of
great interest to the machine learning community after the ap-
pearance of the field known as Deep Learning [43].

Most of the models known as Deep Learning neural networks
share the following characteristics: unsupervised learning of the
data representations to pre-train each of the layers; unsupervised
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training for each layer, where the input to the next layer is the
representation learned at each previous level; using supervised
training for fine tuning of all of the pre-trained layers and one or
more additional layers dedicated to produce predictions. These
characteristics can also generate diversity in the ensemble, since
Deep Learning models have a particular way to initialize the net-
work weights, in contrast to the use of random weights in con-
ventional architectures. Thus, the model learning known as Deep
Belief Network (DBN) was used as an individual predictor. The use
of Deep Belief Networks in time series forecasting can be seen in
[44].

The Support Vector Machines (SVM) was also used as an in-
dividual predictor. The version of SVM for regression problems,
named SVR, is an important solution for time series forecasting. An
example of its use can be seen in [2].

The use of some strategy for generation of the individual pre-
dictors was necessary, since setting the free parameters of neural
networks and support vector machines before training is difficult
and usually problem oriented. A known solution to this issue is to
use some optimization algorithm. In the dynamic selection de-
scribed in this section, there was used the PSO (Particle Swarm
Optimization) for this purpose. An example of using PSO to opti-
mize a neural network to time series forecasting can be seen in [5].

In addition to using heterogeneous individual predictors, di-
versity was also reached with the use of cross-validation in the
training data. Thus, the individual predictors were generated with
different training sets.

4.2. Selection

In the proposed method, the selection phase is responsible for
choosing which combination of individual predictors is most
promising for each test pattern. Three statistical combiners were
selected, namely: average, median and softmax. Such combiners
were selected over other more sophisticated combiners because of
their simplicity and low computational cost.

To estimate the competence of each of the combiners, we have
developed an algorithm inspired in dynamic selection of classi-
fiers. Giacinto and Roli proposed an algorithm called DS-MCB
(Dynamic Selection - Multiple Classifier Behavior) [45]. DS-MCB
uses a function to measure the similarity between the test pattern
and the available classifiers after selection. Each test pattern pre-
sented to the model is associated with an array of labels calculated
for each of the base classifiers. After this phase, k nearest neigh-
bors of the test pattern in the training dataset are found. Then, a
similarity function is used to find samples of this local region that
have similar behavior to the test pattern. The classifier that has
better performance in these filtered training patterns calculates
the model output for the test pattern, thus characterizing a dy-
namic selection. Inspired by DS-MCB, we proposed the DS-FC
(Dynamic Selection of Forecast Combiners). DS-FC is described by
Algorithm 1.

The DS-FC algorithm input is composed by the set of prediction
combiners, the training and test dataset and neighborhood size k,
being the output the most promising combiner for each test pat-
tern presented to the model. For each test pattern t, the vector
PRED; is computed as the prediction t for each of the combiners.
Then, the set of k nearest training patterns is defined. A subset of
this cluster is calculated from the similarity degree among PRED,
and the combiners forecasts to these training patterns (PREDV,j).
The similarity function Sim is given by the Euclidean distance
between PRED, and PRED,. Taking into account this patterns
subset, the combiners produce their forecasts. The combiner with
better performance for the test pattern is selected.

Algorithm 1. DS-FC.

INPUT: the set of combiners C; the datasets T, (training) and T,
(testing); the neighborhood size K;

OUTPUT: ¢/, the most promising combiner for each unknown
pattern t in Tg;

1: for each test pattern t € T, do

2: Compute the vector PRED; as the forecast to t by all com-
biners in C;

3:  Find ¥ as the K nearest neighboors of the test pattern t in
T

4:  for each pattern y; € ¥ do

5: Compute PRED,; as the forecast assigned to yj; by all

combiners in C;

6: Compute Sim as the similarity between PRED, and
PRED,;

7. if (Sim > SimilarityThreshold) then

8: Y =¥ Uy

9: end if

10: end for

11: for each combiner c; € C do

12: Calculate PRED; as the forecast assigned to ¢; in ¥’;

13: end for

14:  Select the best combiner ¢;* = argmax; {PRED;}; 15: end
for

The integration phase does not apply to the proposed method.
This is due to the fact that the final prediction is given only
through the single combiner dynamically selected for each test
pattern.

5. Experiments

This section describes the experiments. First, the datasets used
will be presented. Then, the methodology of the experiments is
shown as well as the parameters used.

5.1. Datasets

The dynamic selection proposed in this paper was mostly ap-
plied to the problem of predicting chaotic time series. As shown
above, the importance of the chaotic series study undergoes fields
such as astronomy and signal processing, being an important
benchmark for forecasting models. Five artificial time series were
used for evaluating the proposed method: Laser, Lorenz, Mackey-
Glass, Henon, and Rossler, each one with 1000 points. To test the
method in real time series, three datasets were used: EEG1 e EEG2
(each one with 1000 points, also) e NOAA (with 1680 points). The
datasets were constructed from a sampling rate equals to 1.

All series were normalized to lie within the interval [0, 1] and
divided into three sets: training (70% of the points), validation
(20% of the points), and testing (10% of the points). Next, the tested
datasets are described:

5.1.1. Mackey-glass

The Mackey-Glass series, continuous, one-dimensional and
standard benchmark for time series forecasting test is formed by
the Eq. (7):

dx X
— = — — X, 7, f 0
dt ﬂl +x] v pn> @)

where f, 7, y and n are real numbers and x, represents the
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value of the variable x in time (t — 7). The chaotic dynamic appears
when 7 > 16.8. The following parameters were used: 7=17, =2,
y=0.1 and n=10.

5.1.2. Lorenz
The Lorenz time series, introduced in [15], is given by Eq. (8):
-
dy
= =1X-Yy - Xz
dt Y
dz
2 _xy—b
a - ®)

where the following parameters were used in the experiments:
6=10, r=28 and b=8/3.

5.1.3. Rossler
The Rossler time series, introduced in [46], is given by Eq. (9):

@ _

dt y

Z—{:x+ay

dz

a_b+z(x—c) )

where the following parameters were used in the experiments:
a=0.15, b=0.2 and c=10.

5.1.4. Henon
The Henon map is given by Eq. (10) [47]:

Xns1=Y, + 1 — ax?
Yni1 = PXn 10)

where the following parameters were used in the experiments:
a=14e f=03.

5.1.5. Laser

Laser is an univariate time series obtained from measurements
collected in a physics lab. The data is a cross section of a regular
intensity laser, where the pulses generated follow a pattern similar
to the theoretical model of Lorenz. The series is used as a time
series forecasting benchmark due to its simplicity and well docu-
mented and understandable standards. The data were obtained in
[48].

5.1.6. EEGI e EEG2

The electroencephalogram, known as EEG, is a medical test that
analyzes the instant brain activity of individuals, usually captured
by electrodes. The relationship between electroencephalogram
time series with dynamic systems can be seen in many works, as
in [18]. The series were obtained from tests in laboratory mice
[49].

5.1.7. NOAA

NOAA is an acronym for National Oceanic and Atmospheric
Administration, an organization that is part of the United States
Department of Commerce. Several climatic data have been col-
lected by ESRL (NOAA Earth System Research Laboratory. The da-
taset used in this word, so-called 20th Century Reanalysis, con-
tains objectively-analyzed 4-dimensional weather maps and their
uncertainty from the late 19th century to 21st century [50].

5.2. Experimental setup

The Algorithm 2 shows the methodology used in this work to

Table 1
Parameters of the proposed method.

Name Description Value
n Time series lag for dataset generation 5
RunsNumber Number of method executions 30
TrainPercent Percentage of the training dataset 70%
ValPercent Percentage of the validation dataset 20%
TestPercent Percentage of the test dataset 10%
IterMax Maximum iterations of PSO 10
SwarmSize Size of PSO population 20
FitnessFunction Fitness function of PSO MSE (Eq
(11))
SimilarityThreshold Threshold of the dynamic selection 0.15

algorithm

reach the results, which are presented and discussed in the next
section. For each dataset, the algorithm is executed three times:
one for performing short-term forecast (one step ahead) and two
for long-term forecast, by direct prediction (ten and twenty steps
ahead).

The Table 1 shows the description and values of the parameters
used. The parameters were defined empirically, after conducting
exhaustive initial tests.

Algorithm 2. Dynamic Selection of Forecast Combiners for
Chaotic Time Series

INPUT: Time series

OUTPUT: Mean and standard deviation of the method predic-
tion errors

1: for each run r € runsNumber do

2: Build the dataset from the time series with lag n (em-
bedding dimension=5);

3: Based in trainPercent, valPercent and testPercent, split the
dataset in training (DB,), validation (DB,;) and test (DB.);

4: Do 4-fold cross-validation in DBy, generating different
training datasets for each individual predictor;

5: According to iterMax, swarmSize and fitnessFunction, run
standard PSO[51] to obtain the best individual predictors
from each model: FANN-1, FANN-2, DBN and SVR;

6: Using DB, calculate the weights for softmax combination
(Egs. (2) and (3));

7: Using DB, calculate the forecasts of the individual pre-
dictors and combiners;

8: Using DB, and the Algorithm 1, calculate the prediction of
the proposed method from the dynamic selection of
combiners;

9: Calculate the forecast errors of the individual models, the
combiners and the dynamic selection;

10: end for

The MSE (Mean Square Error, Eq. (11)) was used to evaluate the
method. The MSE was selected for discussion and used as a per-
formance measure because it is sensitive to the scale of the time
series, incorporating both the variance predictor as well as a
possible bias. In the Eq. (11), P is the total number of patterns in
the set, T;; and Lj; are respectively the actual values and the values
calculated by the model and var(t) is the variance of the values in
the set of desired outputs.

> (T - L2
MSE = ==— an

Others forecast error measures were calculated to compare
with studies in literature. They are: NMSE (Normalized Mean
Square Error, Eq. (12)), NRMSE (Normalized Root Mean Square
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Table 2
PSO coding schema.

Model Parameter Set of Values

FANN1 Number of units in hidden layer  [5 25]

Training epochs [100 5000]
Initial mu (Levenberg-Marquardt [0.0001 0.1]
algorithm)

FANN2 Number of units in first hidden [5 25]
layer
Number of units in second hidden [5 25]
layer
Training epochs [100 5000]
Initial mu (Levenberg-Marquardt [0.0001 0.1]
algorithm)

DBN Number of units in first hidden [5 25]
layer
Number of units in second hidden [5 25]
layer
Training epochs [100 5000]
Initial mu (Levenberg-Marquardt [0.0001 0.1]
algorithm)
Pretraining epochs [50 500]

SVR SVR type [52]
Kernel type [52]

Epsilon-SVR, nu-SVR
Linear, polynomial, radial basis,

sigmoid
Cost [52] [0.1 100]
Nu [52] [011]
Epsilon [52] [011]
Shrinking [52] [01]

Error, Eq. (13)) and RMSE (Root Mean Square Error, Eq. (14)).

p (L= L)?
_ i=1 W
NMSE = 5 N
P (T - L,‘)Z
i sart S
NRMSE = S N
P T _[)2
RMSE = sqrt[w—lm]
P (14)

As PSO was used for algorithm optimization, it was necessary to
define the solution code scheme for each of the individual pre-
dictors. Table 2 shows the parameters and set of values used to
build the candidate solutions.

Table 3
MSE for one step ahead - 30 runs.

6. Results and discussion

Tables 3 shows the average performance and standard devia-
tion of the individual predictors, combiners and the proposed
method of dynamic selection for each dataset, in the one step
ahead forecast, after 30 executions. Highlighted is the best per-
formance for each dataset.

Statistical techniques for comparison of set measurements
should be used to determine whether there are significant differ-
ences between the results with different methods. The Wilcoxon
signed rank test is a statistical nonparametric hypothesis test used
to compare two paired samples from the same population, each
pair being independent, randomly selected. The efficacy of the
Wilcoxon test compared with other tests in the machine learning
models is discussed in [53].

Table 4 shows the comparison of the proposed method (using
MSE) with the best individual predictor and the best combiner, for
one step ahead forecast. The Wilcoxon function tests the null hy-
pothesis in which the data come from a distribution whose med-
ian is zero with 5% confidence level, returning p — value prob-
ability. When p — value is low enough, then one can assume that
the null hypothesis is false (the difference between the distribu-
tions is significant). In Tables e 10, the=sign indicates that the null
hypothesis was not rejected (the difference between the error
averages is not statistically significant) and the models present the
same performance. The > sign indicates that the null hypothesis
was rejected and the proposed method has superior performance
compared with the method used for comparison, while the sign <
indicates otherwise.

In the one step ahead forecast, one can see that among the
individual predictors, the DBN model performed better in six of
the eight datasets: Mackey-Glass, Lorenz, Rossler, Henon, EEG2
and NOAA. In the Laser and EEG1 datasets, the best individual
performance was obtained by the feedforward neural network
with two hidden layers, without any kind of pre-training. Both
models can be considered Deep Learning, turning this neural
network category into an important solution for chaotic time
series forecasting problem. The difference in performance of DBN
in relation to the SVR, for instance, reaches distinct orders of
magnitude. This can be seen, for example, in the Lorenz dataset,
where the MSE varies from e-05 to e-9.

Still in respect to the individual predictors, for one step ahead
forecast, Table 5 shows the average and standard deviation of the
parameters calculated by PSO to generate the used neural net-
works. One can see that the model topologies were relatively close.

Dataset Individual models Combination methods Proposed
FANN-1 FANN-2 DBN SVR Average Median Softmax DS-FC
Mackey-Glass 1.54e-06 1.25e-06 1.19e-06 2.26e-05 2.31e-06 1.02e-06 1.13e-06 9.23e-07
(2.84e-07) (3.33e-07) (2.32e-07) (1.08e-06) (1.24e-07) (1.13e-07) (2.69e-07) (1.60e-07)
Lorenz 6.35e-09 2.67e-09 1.81e-09 1.27e-05 7.84e-07 1.23e-09 1.14e-09 7.74e-10
(8.39e-09) (2.94e-09) (1.58e-09) (4.37e-06) (2.73e-07) (9.71e-10) (1.19e-09) (6.61e-10)
Rossler 4.26e-08 4.45e-08 1.23e-08 1.51e-04 9.64e-06 2.37e-08 9.26e-09 8.35e-09
(3.90e-08) (4.94e-08) (9.57e-09) (6.82e-05) (4.34e-06) (1.69e-08) (8.36e-09) (6.82¢-09)
Henon 2.39e-10 1.81e-10 4.45e-11 2.70e-05 1.69e-06 9.47e-11 4.37e-11 3.72e-11
(2.29e-10) (3.20e-10) (1.53e-11) (3.10e-06) (1.94e-07) (7.47e-11) (1.90e-11) (1.14e-11)
Laser 6.85 4.86 5.26 23.2 4.83 3.98 413 3.72
(1.81) (1.83) (2.42) (52.5) (6.97e-01) (7.50e-01) (1.11) (8.20e-01)
EEG1 7.09e-02 6.07e-02 6.16e-02 8.88e-02 5.80e-02 5.72e-02 5.62e-02 5.52e-02
(1.02e-02) (1.11e-02) (8.37e-03) (2.68e-03) (4.84e-03) (4.70e-03) (5.55e-03) (5.14e-03)
EEG2 9.51e-03 8.94e-03 8.86e-03 1.29e-02 8.53e-03 8.25e-03 8.33e-03 8.17e-03
(7.33e-04) (9.13e-04) (8.35e-04) (4.93e-04) (3.72e-04) (4.31e-04) (4.01e-04) (4.33e-04)
NOAA 55.74 55.01 53.14 58.25 52.77 53.13 52.72 52.93
(2.59) (2.33) (2.64) (9.12e-01) (1.07) (1.06) (1.08) (1.07)
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Table 4
Wilcoxon test in respect to MSE, one step ahead.

Dataset Best Proposed x Best  Best Proposed x Best
Individual Individual (p- Combiner Combiner (p-
value) value)
Mackey- DBN 1.3601e-05 Median 1.2506e-04
Glass > >
Lorenz DBN 4.3544e-04 Softmax 0.0191
> >
Rossler DBN 0.0072 Softmax 0.1658
> =
Henon DBN 8.9187e-05 Softmax 3.8811e-04
> >
Laser FANN-2 9.6266e-04 Median 0.0015
> >
EEG1 FANN-2 4.1955e-04 Softmax 0.0098
> >
EGG2 DBN 8.1878e-05 Median 0.0196
> >
NOAA DBN 0.5857 Softmax 0.0111
= <
Table 5

Mean and std of generated models by PSO.

Model Parameter Values mean and std
FANN1 Number of units in hidden layer 18.9 (2.7)

Training epochs 2830.2 (1190.0)
FANN2 Number of units in first hidden layer 13.4 (4.3)

Number of units in second hidden layer 14.4 (4.5)

Training epochs 1928.6 (1240.3)
DBN Number of units in first hidden layer 15.6 (4.8)

Number of units in second hidden layer 16.0 (4.5)

Training epochs
Pretraining epochs

2115.4 (1507.1)
272.8 (1414)

The FANN-1 model required on average more units in the hidden
layer, and this amount seems to be compensated in the FANN-2
and DBN models by using a second hidden layer. On average, the
simplest model of neural network also needed more training
epochs. Although the DBN model is more expensive, because it has
two hidden layers and needs an average of 272.8 epochs of pre-
training, its performance in the final prediction seems to outweigh
this increased processing cost.

As discussed in several works in literature, combining forecasts
tends to generate responses with better performance. In the
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experiments, both the median and the softmax had generally su-
perior performance than individual predictors in the one step
ahead forecast. Softmax was the best combiner in five datasets
(Lorenz, Rossler, Henon, EEG1 and NOAA) and the median was the
best combiner in the remaining series (Mackey-Glass, Laser and
EEG1). Though the average is a widely used combination in lit-
erature, and generally performs better than individual models, this
did not occur in the experiments. One explanation for this beha-
vior is the average nature, that is a statistical measure very sus-
ceptible to outliers. That was precisely what happened in the ex-
periments: in most of the tested datasets the performance of the
SVR model considerably disagreed when compared with neural
networks, pulling down the average performance. According to the
results, the median managed to overcome this scenario, making
itself useful in situations with this characteristic, when at least one
of the individual models has a lower performance compared with
the others. The results of the combiners support the need for a
dynamic selection method, since it was not possible to predict
which combiner would have the best performance. Rely on aver-
age, due to its extensive use, would be a mistake in the forecast of
these time series. Although softmax had the best combiner per-
formance, this is the only one that needs a validation dataset.
Generating the weights of the weighted sum, as softmax does,
stands for a small additional computational cost in the method.

For one step ahead forecast, the dynamic selection of combi-
ners proposed in this paper showed satisfactory results in all
tested datasets. When compared with individual predictors and
performed combinations, the performance of the method was
higher than the one in all calculated error measure, except in
NOAA dataset. With the Wilcoxon test, it was found that the dif-
ferences in average MSE were significant for all time series both
for individual predictors as for the combiners, except for Rossler
and NOAA dataset compared with softmax. The results confirm the
initial hypothesis that, from the moment it is not known which
combiner produces the best predictions, it is necessary to have a
method to dynamically select the best combination from each test
pattern. For example, the best combination for Mackey-Glass base
was the median, while for Henon the softmax was the best com-
biner. In both cases, the dynamic selection was statistically su-
perior to these combinations.

Figs. 2, 3,4, 5, 6, 7, 8 and 9 show forecasts and absolute errors
of an execution round of the proposed method for each time
series, in one step ahead forecast. In forecast, the blue line with
dots is the desired output and the red line the produced output. In
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Fig. 2. Forecast (a) and error prediction (b) of proposed method for Mackey-Glass.
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Fig. 3. Forecast (a) and error prediction (b) of proposed method for Lorenz.

each figure, the vertical axis of the first graph is given by the de-
sired values and produced predictions. In the second graph, the
vertical axis marks the absolute difference between the desired
and produced output. In both cases, the horizontal axis is given by
the points of the test set. In all datasets, the predictions were very
close to the desired output. Absolute errors present uniform be-
havior, with exceptions in some curve points. Interestingly, the less
close predictions of the ideal curve occurred in datasets with
noise. However, that would be the expected behavior, since the
prediction of natural time series is inherently a more difficult
problem. In NOAA dataset, the combiners were not able to sub-
stantially improve the performance of individual predictors, in-
fluencing the result of the dynamic selection.

The dynamic selection method had satisfactory results when
compared to individual models and combiners of the outputs of
these models. However, it is also necessary to compare the per-
formance of the proposed method with models with lower com-
putational cost, such as statistical methods. Table 6 shows the
comparison between the average DS-FC's performance and the
performance of one execution round of AR, ARMA, ARIMA models
(n=5 is the number of autoregressive terms and moving averages,
where applicable) and the naive predictor. The best performance is
highlighted in tables. It can be seen that the performance of the
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dynamic selection exceeds the tested statistical models, although
these are still used successfully on some problems. Interestingly,
the difference in performance is lower in natural datasets, with
noise. In such cases, it is possible to use one or more statistical
models as individual predictors in dynamic selection.

In real problems, provide only the immediately posterior value
of a time series may be insufficient to ensure the relevance of the
model. In this case, the predictors should be constructed to enable
long-term forecasting. For long-term forecast, two strategies are
commonly used. The multi-stage prediction consists in iteratively
using the short-term model predictions, up to the desired horizon.
In this case, it is shown empirically that the errors can accumulate
and be propagated in future predictions. Another approach is
called direct prediction, where the dataset is constructed to in-
clude the desired output prediction horizon. Tables 7,8 show, ac-
cording to the same disposition of the above results, the perfor-
mance of the proposed method for long-term prediction of ten
and twenty steps. The Tables 9,10 show the results of the Wilcoxon
test for these two sets of experiments.

In the ten steps ahead forecast, once again the DBN stood out as
the best single predictor, getting better results in five of the eight
datasets. Regarding combiners, softmax and median were better in
most datasets. The average was better in Henon dataset. The
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Fig. 4. Forecast (a) and error prediction (b) of proposed method for Rossler.
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Fig. 5. Forecast (a) and error prediction

proposed dynamic selection method achieved superior perfor-
mance in most of the tested datasets (Mackey-Glass, Lorenz, Laser
and EEG2). In EEG1 and Rossler, the performance of the dynamic
selection was statistically similar to the best combiner, despite
having reached the absolute best results. In NOAA dataset, again,
the DS-FC had underperformed the best combiner, despite having
overcome the single best predictor (SVR, in its only appearance
among the best predictors). As in the case of short-term fore-
casting, dynamic selection in ten steps prediction is justified be-
cause, except for one dataset, its performance was at least equal to
the best combiner.

Regarding the twenty steps ahead forecast, the performance of
the proposed method was more affected. In three of the tested
datasets, the DS-FC did not statistically outperform the best in-
dividual predictor, although always got an absolute best result.
When compared to the best combiners, the dynamic selection was
statistically better in two datasets. In the remaining time series,
except for Henon, where the DS-FC was statistically worse than
the median, dynamic selection achieved similar performance.
However, as it happened in the previous experiments, the DS-FC
ensured, in most scenarios, at least the performance of the best
individual predictor and also the best combiner.

Normally, the longer the forecast horizon, more difficult the
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(b) of proposed method for Henon.

problem is. In most tested scenarios, the performance of all pre-
dictors, combiners and dynamic selection decreased when pre-
dictions with greater horizon were made. However, the decay
curve showed variability in the datasets, and three behaviors could
be identified. The first behavior can be observed in Fig. 10, which
shows the average of MSE for predictions of one, ten and twenty
steps in the EEG2 dataset. In this case, with a similar behavior in
EEG1 and Henon time series, the performance difference between
the one and ten step forecasts was greater than the difference
between the ten and twenty steps forecasts. Opposite behavior
occurred in Mackey-Glass dataset (Fig. 11), Lorenz and Laser. In
these time series the performance decreased more abruptly ac-
cording the forecast horizon. Two unusual situations occurred. The
first one can be seen in Fig. 12, which shows the performance
variation of the NOAA dataset. In NOAA, the short-term forecast
was worse than both long-term predictions. This behavior may
have influenced the poor performance of the proposed method in
this time series. Another odd situation occurred in Henon dataset,
where the long-term forecasts were much worse than the short-
term predictions in several orders of magnitude. This behavior
may be explained by the presence of more seasonal cycles in this
series, as shown in Fig. 5.

The results achieved by the proposed method were compared
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Fig. 6. Forecast (a) and error prediction (b) of proposed method for Laser.
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Fig. 7. Forecast (a) and error prediction (b) of proposed method for EEG1.

with some published studies that had used the tested datasets.
The works related in this analysis are of different natures, pre-
dicting chaotic series with techniques like swarm intelligence [54],
fuzzy logic [55] and hybrid models [3]. Table 11 shows a com-
parison of the average of three forecasting error measures
achieved by the proposed method (NMSE, NRMSE and RMSE) with
published results, in the one step forecast. In absolute values, the
dynamic selection achieved better performance than all the works
shown in four of the tested time series (Mackey-Glass, Lorenz,
Rossler and Henon). In Rossler and Henon series, the performance
of the proposed method in relation to NMSE had a very significant
gain. In Laser series, the proposed method had a lower perfor-
mance compared to two techniques: a recursive Bayesian neural
network and a SVR model with fuzzy logic. Nevertheless, the re-
sults obtained in this work proved to be competitive. It is im-
portant to remember that this comparison should be made with
reservations, since the other experiments have not been re-
produced, and most of them are the results of a single execution
round.

The literature also contains works that investigate the long-
term forecasting of chaotic time series. One category of techniques
widely used in this task are the so-called neurofuzzy models. An
example can be seen in the work of Gholipour et al. [59]. In this
paper, the authors provide long-term prediction of three time
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series, including Lorenz in ten steps ahead forecasts. The neuro-
fuzzy prediction achieved NMSE of 3.9e-03, while the DS-FC ob-
tained 1.5140e-08 as an average of the same error measure. An-
other example of using neurofuzzy approaches to time series
forecasting can be seen in [60], where the authors propose a
model applied to space weather prediction.

Since the proposed method is not limited to the use of in-
dividual predictors and combinations tested, any of these neuro-
fuzzy models can be used. The dynamic selection presented in this
study acts more like a framework. It is possible to modify both
predictors as combiners. Thus the dynamic selection can be made
with a combination of several techniques that have already been
tested or that may be used in the future and tend to show better
results than individual models, as discussed in this analysis.

7. Conclusions and future works

Based on classification and pattern recognition problems, this
paper proposed a method of dynamic selection of forecast com-
biners for chaotic time series. Initially, individual predictors with a
good degree of diversity produce their respective outputs. Di-
versity is achieved by the use of heterogeneous models and cross-
validation. Second, combinations are performed on individual
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Fig. 8. Forecast (a) and error prediction (b) of proposed method for EEG2.
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To test the proposed method, eight time series with chaotic
behavior were used: Mackey-Glass, Lorenz, Rossler, Henon, Laser,
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Fig. 9. Forecast (a) and error prediction (b) of proposed method for NOAA.
Table 6
Comparison with statical models - MSE.
Dataset DS-FC AR ARMA ARIMA Naive
Mackey-Glass 9.23e-07 2.78e-02 9.60e-02 5.09e-02 7.86e-02
Lorenz 7.74e-10 7.09e-04 7.07e-04 8.99e-04 4.59
Rossler 8.35e-09 1.72e-01 2.77e-03 6.00e-01 13.78
Henon 3.72e-11 1.09 1.97 1.09 2.46
Laser 3.72 2443.53 734.77 568.22 7506.55
EEG1 5.52e-02 7.55e-01 4.39 3.60 1.03
EEG2 8.17e-03 1.76e-01 3.53 9.13e-01 2.29e-01
NOAA 52.93 484.75 969.607 764.72 7.86e-02

predictions. Finally, a dynamic selection algorithm is used to
choose the most promising combination for each test pattern.
Neural networks and support vector machine were used as in-
dividual predictors, while the selected combiners were the aver-
age, median and softmax. Simple statistical measures were used as
combiners due to their easy implementation and relative robust-
ness compared with more sophisticated methods. The dynamic
selection was performed with the algorithm called DS-FC (Dy-
namic Selection - Forecast Combiners). It is important to state that
the method acts as a framework, working similarly with other

predictors and combiners.

Table 7

MSE for ten steps ahead - 30 runs.

EEG1, EEG2 and NOAA. The prediction of chaotic series is im-
portant for many areas of human activity such as astronomy and
signal processing, and those that were tested also are used as
benchmark in several works. In the experiments, the DBN model
stood out as best individual predictor in four datasets. As in the
other dataset the best model was a neural network with two
hidden layers, Deep Learning seems to be a good technique for
chaotic time series forecasting. Median and softmax were the best
combiners. Apparently, the average could not overlap outliers,

since the SVR model presented discrepant results compared with

other individual predictors.

The proposed dynamic selection achieved satisfactory results in
all datasets. For one step ahead forecasts, after conducting statis-
tical tests, it was proven that the method was superior to the best
combiners in six of the eight time series. Compared with many
works of literature, the dynamic selection presented in this study
had better results than most of them and, when it had no better
performance, it showed competitive error measures.

In the case of long-term forecasts for ten and twenty steps, the
performance of the proposed method is less significant than in the
case of the simpler prediction. But yet, in most scenarios tested,

the DS-FC reached at least the best performance of the individual

Dataset Individual models Combination methods Proposed
FANN-1 FANN-2 DBN SVR Average Median Softmax DS-FC
Mackey-Glass 1.83e-06 1.39e-06 1.09e-06 2.13e-04 1.46e-05 1.22e-06 1.07e-06 9.46e-07
(3.13e-07) (3.30e-07) (2.12e-07) (1.24e-05) (8.30e-07) (1.50e-07) (1.89e-07) (1.74e-07)
Lorenz 1.13e-06 5.89e-07 2.86e-07 2.35e-01 1.46e-02 2.85e-07 6.84e-07 2.72e-07
(8.64e-07) (2.71e-07) (1.33e-07) (6.54e-02) (4.07e-03) (1.02e-07) (8.87e-07) 1.14e-07)
Rossler 8.42e-04 9.44e-05 1.65e-04 1.09e+00 6.84e-02 1.47e-04 8.16e-05 7.56e-05
(9.87e-04) (9.36e-05) (1.54e-04) (3.90e-01) (2.43e-02) (1.56e-04) (8.91e-05) (8.17e-05)
Henon 1.04 1.05 1.05 1.05 1.02 1.02 1.02 1.03
(2.55e-02) (5.23e-02) (2.57e-02) (2.26e-02) (1.42e-02) (1.55e-02) (1.42e-02) (1.43e-02)
Laser 4758 34.59 27.74 257.45 28.93 20.13 18.26 13.38
(18.72) (28.62) (10.91) (100.98) (12.24) (8.81) (8.82) (5.14)
EEG1 3.87e-01 3.85e-01 3.89e-01 4.39e-01 3.79e-01 3.80e-01 3.79e-01 3.79e-01
(1.47e-02) (1.28e-02) (1.79e-02) (1.09e-02) (711e-03) (8.14e-03) (7.05e-03) (6.73e-03)
EEG2 6.51e-02 6.33e-02 6.64e-02 8.34e-02 6.51e-02 6.44e-02 6.46e-02 6.40e-02
(3.70e-03) (3.84e-03) (5.84e-03) (3.13e-03) (2.38e-03) (2.70e-03) (2.46e-03) (2.54e-03)
NOAA 46.03 46.63 45.91 44.27 43.36 43.94 43.23 43.61
(2.03e) (2.15e) (2.28) (7.31e-01) (7.39e-01) (8.59e-01) (7.35e-01) (7.90e-01)
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Table 8

MSE for twenty steps ahead - 30 runs.
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Dataset Individual models Combination methods Proposed
FANN-1 FANN-2 DBN SVR Average Median Softmax DS-FC
Mackey-Glass 1.83e-05 1.05e-05 9.70e-06 2.89e-03 1.88e-04 9.70e-06 9.21e-06 7.65e-06
(4.93e-06) (2.25e-06) (1.76e-06) (1.81e-04) (1.20e-05) (1.17e-06) (1.66e-06) (1.18e-06)
Lorenz 2.84e-05 9.91e-06 8.13e-06 8.52 5.32e-01 9.45e-06 1.25e-05 8.12e-06
(1.93e-05) (6.43e-06) (5.19e-06) (1.87) (1.17e-01) (3.69e-06) (1.26e-05) (4.52e-06)
Rossler 3.22e-03 2.06e-04 1.73e-04 3.83e+00 2.38e-01 4.09e-04 1.14e-04 1.08e-04
(2.02e-03) (1.62e-04) (3.93e-04) (1.94e+00) (1.21e-01) (2.65e-04) (9.20e-05) (8.07e-05)
Henon 1.01 1.03 9.95e-01 9.68e-01 9.85e-01 9.83e-01 9.85e-01 9.86e-01
(4.14e-02) (4.36e-02) (2.86e-02) (2.95e-02) (1.63e-02) (1.59e-02) (1.62e-02) (1.49e-02)
Laser 138.35 65.41 84.72 505.38 78.63 67.49 4713 40.32
(75.68) (32.85) (30.82) (143.21) (25.82) (25.97) (18.67) (14.38)
EEG1 4.03e-01 4.14e-01 4.06e-01 4.05e-01 3.93e-01 3.94e-01 3.93e-01 3.93e-01
(1.78e-02) (2.01e-02) (1.75e-02) (1.44e-02) (7.86e-03) (8.70e-03) (7.73e-03) (7.98e-03)
EEG2 6.30e-02 6.28e-02 6.64e-02 6.45e-02 6.15e-02 6.18e-02 6.14e-02 6.13e-02
(4.53e-03) (5.03e-03) (5.72e-03) (5.36e-03) (2.49e-03) (2.23e-03) (2.46e-03) (2.34e-03)
EEG2 49.42 49.63 48.13 49.17 46.67 46.83 46.66 46.61
(2.03) (2.09) (2.14e) (6.87e-01) (6.80e-01) (8.90e-01) (6.63e-01) (6.52e-01)
0.07 T T T T T T
Table 9

Wilcoxon test in respect to MSE, ten steps ahead.

L

— — — Individual Predictor

< 10°

10

20

Dataset Best Proposed x Best  Best Proposed x Best
Individual Individual (p- Combiner Combiner (p-
value) value)
Mackey- DBN 1.7988e-05 Softmax 3.1817e-06
Glass > >
Lorenz DBN 0.5377 Median 0.0496
= >
Rossler FANN-2 0.0185 Softmax 0.3820
> =
Henon FANN-1 0.0175 Mean 3.8811e-04
> <
Laser DBN 1.9209e-06 Softmax 9.3157e-06
> >
EEG1 DBN 0.0041 Median 0.6143
> =
EGG2 DBN 0.0157 Median 0.0053
> > 0
NOAA SVR 0.0044 Softmax 5.2165e-06
> <
1
Table 10
Wilcoxon test in respect to MSE, twenty steps ahead. 09
Dataset Best Proposed x Best ~ Best Proposed x Best 08Ff
Individual Individual (p- Combiner Combiner (p-
value) value) 0.7F
Mackey- DBN 4.2857e-06 Softmax 1.7344e-06 06k
Glass > > :
Lorenz DBN 0.8936 Median 0.0830 ost
Rossler DBN 0.8612 Softmax 0.6612
= = 04
Henon DBN 0.0545 Median 0.0021
= < 03F
Laser FANN-2 5.7517e-06 Softmax 3.7243e-05
> > 021
EEG1 FANN-1 0.0060 Softmax 0.6733
> =
EGG2 FANN-2 0.0407 Softmax 0.0627
> = 0
NOAA DBN 3.8811e-04 Softmax 0.9099 1
N =

20

Fig. 11. Multi-step forecasting decay curve - Mackey-Glass.
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Fig. 12. Multi-step forecasting decay curve - NOAA.
Table 11
Comparison with literature.
Dataset Method NMSE NRMSE  RMSE
Mackey- Proposed 1.98e-05 2.95e-03 9.57e-04
Glass Ardalani-Farsa et al. (2011) 1.30e-03
[56]
Chandra et al. (2012) [17] 2.79e-04 6.33e-03
Li et al. (2012) [1] 1.94e-01
Miranian et al. (2013) [55] 7.90e-04
Yilmaz et al. (2010) [57] 1.09e-03
Lorenz Proposed 2.97e-11 3.28e-06 2.51e-05
Ardalani-Farsa et al. (2011) 2.96e-02
[56]
Chandra et al. (2012) [17] 6.36e-03
Li et al. (2012) [1] 2.23e-01
Miranian et al. (2013) [55] 6.40e-05
Bodyanskiy et al. (2013) [3] 1.89e-01
Rossler Proposed 1.27e-10 7.10e-06 8.50e-05
Mirikitani et al. 1 (2010) [58]  1.01e-03
Mirikitani et al. 2 (2010) [58] 8.10e-04
Miranian et al. (2013) [55,58]  1.50e-05
Henon Proposed 3.58e-11 4.41e-06 6.04e-06
Mirikitani et al. 1 (2010) [58]  7.20e-04
Mirikitani et al. 2 (2010) [58]  6.80e-04
Miranian et al. (2013) [55] 4.40e-04
Laser Proposed 1.47e-03 2.70e-02 1.92
Mirikitani et al. 1 (2010) [58]  4.36e-03
Mirikitani et al. 2 (2010) [58]  6.00e-04
Miranian et al. (2013) [55] 5.30e-04

predictors and combiners.

The proposed method selects the combiner with better per-
formance on a subset of the training dataset similar to a given test
pattern. The similarity in the implemented algorithm is given by
the Euclidean distance between the predictions of combiners to
the test pattern and the selected competence area. Selection of the
competence area is determined by the k nearest neighbors of the
test pattern. The method tends to beat the performance of the
combiners because it is unlikely that any of them is superior to
others in all areas of competence. By extending the reasoning
described by Egs. (4), (5) and (6), the dynamic selection has a
disposition to get at least the performance of the best model in the
ensemble. For each test pattern, the algorithm searches the best
combiner in the most appropriate competence region, defined by
the performance experience in a known dataset. This case is pre-
cisely what occurred in the experiments where the proposed
method reached at least the performance of the best combiner.

As future work, several paths can be followed: use of other
dynamic selection methods rather than nearest neighbor techni-
ques; test the method with other individual predictors and com-
biners; use unsupervised techniques to support dynamic selection.
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