
Deep Learning for Wind Speed Forecasting in

Northeastern Region of Brazil

Anderson Tenório Sergio, and Teresa B. Ludermir

Centro de Informática

Universidade Federal de Pernambuco, UFPE

Recife, Brasil

{ats3,tbl}@cin.ufpe.br

Abstract—Deep Learning is one of the latest approaches in

the field of artificial neural networks. Since they were first

proposed in mid-2006, Deep Learning models have obtained

state-of-art results in some problems with classification and

pattern recognition. However, such models have been little used

in time series forecasting. This work aims to investigate the use of

some of these architectures in this kind of problem, specifically in

predicting the hourly average speed of winds in the Northeastern

region of Brazil. The results showed that Deep Learning offers a

good alternative for performing this task, overcoming some

results of previous works.

Keywords—deep learning; neural networks; time series

forecasting; wind forecasting

I. INTRODUCTION

One of the main goals of the research in Artificial
Intelligence is to emulate the efficiency and robustness with
which the human brain interprets sensory input and processes it
in a useful way for daily activities. During the more than 50
years of studies in this field, various designs and architectures
have been proposed, tested and used successfully in a practical
way in several branches of knowledge. An example of these
models is artificial neural networks, having the feed-forward
network as their best-known architecture. However, all the
proposed models undergo the so-called "curse of
dimensionality" [1].

A possible solution to this problem is data pre-processing
by reducing its dimensionality, usually performed by humans
[2]. However, this solution can be challenging and highly
dependent on the task [3]. Moreover, there is no evidence that
the human brain processes similarly the vast amount of data to
which it is exposed. This organ takes advantage of an intricate
hierarchy of modules and, over time, learns to represent
observations based on regularities that they exhibit. These
findings were obtained through the work of Lee et al. [4] [5].
They studied how the visual cortex of the mammalian brain
operates. The neocortex, for example, does not require pre-
processed sensory signals.

Given to this scenario, it was developed a new subarea in
artificial intelligence that dealt with computer models for
information representation that exhibited characteristics that
were similar to the ones of the neocortex. This subarea is often
called Deep Learning (DL). The Deep learning algorithms can
be considered as learning processes that find multiple levels of

representation, and more abstract features of the data are
represented by higher levels [6]. The more abstract
representations can be more useful in extracting information
for classifiers or predictors [7]. In addition to this, the learned
intermediate characteristics can be shared among different
tasks [8].

Over decades, many researchers have unsuccessfully tried
to train neural networks with multiple deep layers [9] [10].
Networks were often trapped in local minima when initialized
with random weights. As depth increased, a good
generalization became even more difficult. Experiments have
shown that the results of deep neural networks with randomly
initialized starting weights obtain worse results than neural
network with one or two hidden layers [11] [12]. In 2006,
Hinton et al. found that the results of a deep neural network
could be significantly improved when pre-trained with a non-
supervised learning algorithm, one layer after another, starting
from the first layer [13]. This work booted the area now known
as Deep Learning. At the beginning of the research in this
subarea, in general, algorithms had the following
characteristics: unsupervised learning of representations to pre-
train each of the layers; unsupervised training, one layer at the
time, being the representation learned at each level the input to
the next layer; using supervised training for fine tuning of all
pre-trained layers, as well as one or more additional layers
dedicated to the production of predictions.

The models that make up Deep Learning can be applied in
various problems, both in academy and in industry, i.e. in
speech recognition and signal processing [14], object
recognition [15], natural language processing [16] and transfer
learning [17]. Even with some works available (reviewed in
section III), the use of Deep Learning in time series forecasting
has received less attention. A time series can be defined as a
chronological sequence of observed data of any task or
periodic activity in such fields as engineering, biology,
economics or social sciences [18].

This study aims to investigate some of the Deep Learning
models in wind speed forecasting in the northeastern region of
Brazil. The prediction of these values can significantly reduce
the operating difficulties in a wind power plant, as well as in
traditional sources of energy, since it is possible to integrate
efficient models of wind power generation forecasting with
other electrical generation systems [19].

II. DEEP LEARNING

A. Deep Belief Networks

Deep Belief Networks (DBN) are neural networks that
follow a generative probabilistic model, first introduced in
[13]. Generative models provide a probabilistic distribution on
data and labels, providing the estimation of P(Observation|
Label) and P(Label|Observation). Discriminative models, like
most conventional neural networks, only provide
P(Label|Observation). DBN aim to mitigate some of the
training problems of conventional neural networks: the need of
much labeled data in the training set; slow training and
inadequate learning techniques for selection parameters that
lead to local minima.

DBNs are based on Sigmoid Belief Networks, a generative
multilayer neural network proposed before the appearance of
Deep Learning, trained with variational approaches [20]. An
example of a Sigmoid Belief Network can be seen in Figure 1.
Network is represented as a directed graphical model and each
random variable node is represented by directed arcs,
indicating a direct dependence. The observed data is x and the
hidden factors in the k level are the elements of vector h

k
. The

parameterization of conditional distributions (in the downward
direction) is similar to activation of conventional neuron

networks, given by Equation 1.
 is the binary activation of

the hidden node i in layer k, is the vector

 ,
where x = h

0
.

 (

 |)
 ∑

 (1)

The bottom layer generates a vector x in the input space.
Considering multiple levels, the generative model of a Sigmoid
Belief Network is given by Equation 2.

 (∏ |

) |

(2)

In this case, P(x) is intractable in practice, except in very
small models. The upper layer is then factored given by

 ∏
 .

Deep Belief Networks are quite similar to Sigmoid Belief
Networks. In DBN, probabilities are given by components
called Restricted Boltzmann Machines (RBM). Deep Belief
Network architecture can be seen in Figure 2.

RBM, represented in Figure 3, are non-directed graphical
models without connections between nodes in the same layer.
They are composed of input units (or visible) xj and hidden
units hi, allowing the calculation of P(h|x) and P(x|h). An RBM
is normally trained by a learning algorithm that trains each
layer at a time in a greedy way, building more abstract
representations of the original data through P(h

k
|x). Hinton

called this algorithm Contrastive Divergence [21].

In comparison with other one layer models, RBM are more
attractive as building blocks due to their easy training.
According to the Contrastive Divergence algorithm, a vector v
is presented to the visible units during the training phase. These

values are propagated to the hidden units. On the other hand,
the entries are stochastically calculated aiming at the
reconstruction of the original data, through a process known as
Gibbs Sampling. The correction of weights is given by the
difference in the correlation of the hidden and visible entries
activations. The training time is reduced considerably and each
added layer increases the probability of obtaining the training
data.

Figure 1: Sigmoid Belief Network.

Figure 2: Deep Belief Network.

After this pre-training, DBN may admit fine tuning for
better discriminative performance. The adjustment is
accomplished by the use of labeled data and another training
algorithm, such as the well-known backpropagation. In this
case, a set of labels is attached to the upper layers of the
network.

Figure 3: Restricted Boltzmann Machine.

B. Stacked Autoencoders

Autoencoders are a type of neural network also known as
Diabolo networks [22]. Overall, training a self-encoder is
easier than training an RBM. Self-encoders have been used as
building blocks in Deep Learning architectures, in which each
level is trained separately [11].

An autoencoder is trained for encoding an input x for some
representation c(x) so that it can be reconstructed from this
representation. The decoding function f(c(x)) gives the
reconstruction of the network, usually a vector of numbers
obtained through a sigmoid. The expectation is for c(x) to be a
distributed data representation that captures the main factors of
variations.

According to [8], the procedure to train Stacked
Autoencoders is similar to the process performed in Deep
Belief Networks: (i) Train the first layer as an autoencoder in
order to minimize the reconstruction error of the original input,
in an unsupervised way. (ii) The outputs of the hidden units are
used as inputs for another layer, also trained as an autoencoder.
These two steps do not require labeled data. (iii) Iterate step
two to boot the desired number of additional layers. (iv) Use
the output of the last hidden layer as input for a supervised
layer and randomly initialize its parameters or use it in a
supervised manner. (v) Perform fine-tuning of all parameters of
this deep architecture through a supervised criterion.
Alternatively, fold all autoencoders on a very deep autoencoder
and perform fine-tuning in the overall reconstruction error.

The idea is that autoencoders must have low reconstruction
error in the training examples, but high reconstruction error in
most other configurations. Autoencoders can be regularized to
avoid simply learning the identity function. An example is the
so-called Denoising Auto-Encoders [23] that uses versions of
the input data with noise. The model used in this work is
known as Stacked Denoising Auto-Encoders (SDAE).

III. DEEP LEARNING FOR TIME SERIES FORECASTING

Deep Learning models were originally used in
classification and pattern recognition problems. After that, such
models started to be applied in various machine learning tasks,
among which, time series forecasting. Although literature has
some works on DL with series (some of them reviewed below),
there are still no conclusive results about the role of pre-
training on this model and the relationship between
architecture and the dimensionality of the data. The
dimensionality is usually provided by the lags of the time
series.

Romeo et al. [24] used deep neural networks to predict
temperatures series. The authors used Stacked Denoising
Autoencoders as pre-training. The experiment took into
account the fine tuning that occurred only in the last layer or in
all network layers. The performance was improved when
compared to systems without pre-training, but not as much as
in other types of problems. This could be justified by the
characteristic of the series used and the low-dimensional data.

Kuremoto et al. [25] used an only one hidden layer Deep
Belief Network to predict a competition time series. According
to the authors' experiments, the performance of DBN was
better than the one of models such as MLP (Multilayer
Perceptron), Bayesian learning and ARIMA. In DBN,
performance was improved with the use of differential data.
The hyperparameters model (lag of the time series, the number
of neurons in the hidden layer and learning rates) was
optimized by PSO (Particle Swarm Optimization). Despite

having only one layer, the model is considered deep learning
by having pre-training.

Chen et al. [26] also used a Deep Belief Net to forecast a
series containing drought index data in an Asian river basin. As
DBN component, the authors used an RBM for continuous data
(CRBM). Unlike the previous model, network was built with
two hidden layers. The results were better than in a common
MLP.

Chao et al. [27] used a DBN to predict a time series of
exchange rate. In this case, CRBM were also used as building
blocks of the model. The results were better than in the feed
forward architectures.

IV. CASE STUDY

Several parameters can directly influence the outcome of
the forecast. Therefore, a strategy for the selection of these
parameters is required. At this work, the following parameters
were varied by a ramdom grid search: the number of neurons in
the input layer of the network, the number of neurons in the
first hidden layer, the number of neurons in the second hidden
layer and whether there is or not any type of pre-training.

A time series may be formalized as a sequence of scalar
random observations . The lag of the
series is given by the delay used to form the network training
and testing data. Then, time series forecasting means predict a
future value of the sequence, given by
 ̅ . d is the lag, k is the step

lag and F, in this work, is the neural network.

The number of neurons in the network input layer is related
to the time series lag. The number of hidden layers and the
number of neurons in each of them are associated with the
complexity of the model, since it increases the number of free
parameters. The fewer free parameters, the easier it is to train
the model. The more complex the network, the greater is the
risk of overfitting. This work has chosen to use two hidden
layers in the network, since algorithms and architectures of
Deep Learning are used.

In order to investigate the use of Deep Learning approaches
in time series forecasting series, two types of pre-training were
used in the experiment. In the first case, each of the layers was
considered to be an autoencoder and noise was added to the
input data, characterizing the model known as Stacked
Denoising Autoencoders (SADE). In another approach, each of
the layers was considered a Restricted Boltzmann Machine,
characterizing the model known as Deep Belief Network
(DBN). Depending on how the parameters were selected, some
networks were trained without any pre-training, and could,
thus, be considered a common MLP. The aim was to verify
whether it would be worth carrying out the pre-training or not.

Three time series of the SONDA project [28] were used.
The SONDA project keeps free databases of solar and wind
energy resources in Brazil. They are:

 Belo Jardim (BJD): City in the state of Pernambuco.
Series with 13176 patterns consisted of hourly
average speed of wind obtained from the wind power

plant of Belo Jardim, from July 1, 2004 to December
31, 2005.

 São João do Cariri (SCR): City in the state of Paraíba.
Series with 17520 patterns consisted of hourly
average speed of wind obtained from the wind power
plant of São João do Cariri, from January 1, 2006 to
December 31, 2007.

 Triunfo (TRI): City in the state of Pernambuco. Series
with 21936 patterns consisted of hourly average speed
of wind obtained from the wind power plant of
Triunfo, from July 1, 2004 to December 31, 2006.

Figure 4 shows the methodology used in this case study.

The values for n, h1 and h2 were defined empirically after
exhaustive testing. The performance used for the selection of
the best networks in the training phase is the mean square error
(MSE), given by equation 3.

∑ ∑

(3)

In equation 3, P is the number of patterns in the data set, N
is the number of output units of the network and and are

respectively the desired output value and the value calculated
by the i-th neuron of the output layer. In this experiment, N is
given by 1, because it is a problem of time series prediction.

Figure 4: Methodology of Case Study

To evaluate the network in the testing phase and in order to

measure performance, besides using the MSE, the mean
absolute error (MAE) and the percentage of absolute error
(MAPE) were also used. MAE and MAP are given respectively
by equations 4 and 5.

∑∑| |

(4)

∑ ∑|

|

(5)

V. RESULTS AND DISCUSSION

Next, the results will be shown and discussed. Table I
presents the configuration and performance of the top 20
systems created for the series of Belo Jardim (BJD). Table II
shows the mean and standard deviations in the performance of
each approach at a test database. The best results are
highlighted.

One can see that the best system was generated by an
architecture without any kind of pre-training. On average, the
performance of the MLP model was better. However, this
comparison between the means must be made carefully,
because the number of systems created with each of the
possible architectures varies widely. An achievement of the
Deep Learning approaches was the fact of having generated
more systems among the top 20, 17 DBN models and 1 SDAE
models.

TABLE I. 20 BEST SYSTEMS CREATED FOR BJD

Model N h1 h2 MSE MAE MAPE

DBN 50 50 75 0.666960 0.626273 0.120186

DBN 25 25 25 0.681332 0.633652 0.120052

SDAE 25 25 25 0.711954 0.653798 0.122903

MLP 25 25 50 0.638798 0.617384 0.115075

DBN 25 25 50 0.681478 0.639206 0.122665

DBN 50 75 50 0.648109 0.620767 0.119127

DBN 25 75 75 0.678515 0.635774 0.120895

DBN 25 25 75 0.670442 0.630098 0.119028

DBN 50 25 75 0.678035 0.635109 0.120006

DBN 100 25 25 0.661876 0.628315 0.120674

DBN 25 50 25 0.672718 0.629412 0.118400

DBN 75 25 50 0.675832 0.635165 0.120369

DBN 50 50 50 0.664829 0.627536 0.119125

DBN 25 50 50 0.670523 0.627389 0.117496

DBN 50 75 25 0.644938 0.619416 0.117406

DBN 25 75 50 0.677723 0.636206 0.120341

DBN 25 50 75 0.711025 0.648855 0.123957

DBN 50 25 50 0.678427 0.631983 0.121384

MLP 25 75 25 0.599255 0.596238 0.112018

DBN 25 75 25 0.681167 0.639159 0.121880

TABLE II. MEAN AND STANDARD DEVIATION FOR BJD

Model MSE MAE MAPE Quantity

MLP
0.619027

(0.027961)
0.606811

(0.014953)
0.113546

(0.002162)
2

DBN
0.673172

(0.014611)

0.632019

(0.007177)

0.120176

(0.001719)
17

SDAE
0.711954

(0.000000)
0.653798

(0.000000)
0.122903

(0.000000)
1

1. Select database. db = [BJD, SCR, TRI]

2. Define the possible values for the number of input

neurons. n = [25, 50, 75, 100, 125, 150]

3. Define the possible values for the number of

neurons in the first hidden layer. h1 = [25, 50, 75,

100]

4. Define the possible values for the number of

neurons in the second hidden layer. h2 = [25, 50,

75, 100]

5. Define the type of pre-training. pt = [MLP (without

pre-training), DBN, SDAE].

6. Using training database (75% of full database),

execute 100 training runs randomly selecting one

of the possible values for each parameter (n, h1,

h2, pt). The pre-training, if any, is performed on all

layers, except the output layer. Fine tuning is

performed with Levenberg-Marquadt algorithm.

7. Select the 20 models with better performance in

training phase.

8. Using the test database (25% of full database),

check the performance of selected models.

Following the same idea, tables III and IV show the results
for the series of São João do Cariri (SCR). Then the tables V
and VI do the same for the series of Triunfo (TRI).

One can see that, in SCR database, systems with pre-
training have obtained the best performance taking into
consideration all the error measures. Regarding the average
performance, DBN was better with MAE and MLP with
MAPE and MSE. However, just one MLP was in the best
systems set, against 19 DBN. It is worth to note that no SDAE
was in the best group.

TABLE III. 20 BEST SYSTEMS CREATED FOR SCR

Model n h1 h2 MSE MAE MAPE

DBN 50 50 75 0.685671 0.640265 0.126682

DBN 25 25 25 0.662088 0.626428 0.123490

DBN 50 75 75 0.692896 0.646241 0.134538

DBN 75 75 25 0.694653 0.642838 0.137266

DBN 25 25 50 0.662638 0.630890 0.128272

DBN 50 25 75 0.688955 0.643765 0.126561

DBN 25 75 75 0.680738 0.637218 0.126756

DBN 25 25 75 0.662190 0.630120 0.122203

DBN 75 50 50 0.684201 0.640217 0.134845

DBN 50 25 50 0.690305 0.643674 0.133328

DBN 25 50 25 0.649658 0.621233 0.127053

DBN 50 25 25 0.671109 0.632003 0.136889

MLP 25 50 50 0.676899 0.638682 0.126585

DBN 25 50 50 0.667266 0.631705 0.126921

DBN 75 25 25 0.687672 0.637887 0.133360

DBN 75 50 25 0.684736 0.635869 0.127056

DBN 25 50 75 0.680012 0.639830 0.123427

DBN 25 75 50 0.666790 0.629922 0.125876

DBN 50 75 25 0.675534 0.635686 0.129938

DBN 100 75 75 0.687922 0.643723 0.138402

TABLE IV. MEAN AND STANDARD DEVIATION FOR SCR

Model MSE MAE MAPE Quantity

MLP
0.676899

(0.000000)

0.638682

(0.000000)

0.126585

(0.000000)
1

DBN
0.677633

(0.012804)

0.636290

(0.006776)

0.129624

(0.005062)
19

SDAE - - - 0

For the Triunfo time series, the best performance according
to the MSE, MAE and MAPE was achieved by the DBN
models. As in the other two databases, most of the best systems
were DBN, without any SDAE. The top 20 set contained 4
MLP. With respect to the average performance, better
approach came from the DBN models according to all error
measures.

Although in the BJD series the best performance was
achieved by an architecture without any kind of pre-training,
one can see that among the systems created for all databases,
the DBN model has outperformed the others approaches in the
vast majority of cases according to all error measures. So we
can infer that, to predict the wind speed in the databases
studied, the DBN model would be the best choice. Also, it is
possible to conclude that in these same conditions, the model
with worst performing would be SDAE. This Deep Learning
architecture just figured once among the best systems created,
in BJD series.

All tested systems had two hidden layers. Some time ago,
this would be an impediment for numerical simulations. But
with the growth of computing power, to train neural networks
with more than one hidden layer is not as expensive as it once
was. If caution is taken to avoid overfitting, the gain in adding
another hidden layer can directly impact the performance of the
systems. This can be proved when the results of this study are
compared with other forecasts performed for these same
weather series. Table VII compares the best performance of the
models tested in this article with two similar approaches using
Reservoir Computing optimization with evolutionary
algorithms, one with Genetic Algorithm (GA) and another one
with PSO (Particle Swarm Optimization).

TABLE V. 20 BEST SYSTEMS CREATED FOR TRI

Model n h1 h2 MSE MAE MAPE

MLP 25 25 25 1.941906 1.021253 0.110764

DBN 25 25 25 1.551106 0.951877 0.106038

DBN 50 75 25 1.496886 0.921589 0.100605

MLP 25 25 50 1.828327 1.023901 0.115217

DBN 25 25 50 1.575730 0.954733 0.105676

DBN 50 25 50 1.482294 0.926188 0.103646

DBN 100 75 50 1.521698 0.923593 0.102849

DBN 25 25 75 1.463582 0.909818 0.100964

DBN 50 50 50 1.635742 0.969299 0.104607

DBN 75 50 50 1.516546 0.930249 0.103804

DBN 50 75 75 1.509517 0.928221 0.102806

DBN 25 75 75 1.764116 1.001344 0.108077

MLP 25 50 50 1.754493 1.004082 0.110033

DBN 25 50 50 1.463823 0.911560 0.100764

MLP 25 75 50 1.735531 0.997910 0.107941

DBN 50 75 50 1.421144 0.898138 0.098984

DBN 25 50 75 1.563875 0.952422 0.105285

DBN 100 75 25 1.601268 0.966846 0.112077

DBN 50 25 25 1.488428 0.922586 0.101310

DBN 75 25 25 1.408690 0.896288 0.101205

TABLE VI. MEAN AND STANDARD DEVIATION FOR TRI

Model MSE MAE MAPE Quantity

MLP
1.815064

(0.093558)

1.011787

(0.012758)

0.110989

(0.003062)
4

DBN
1.529028

(0.087889)

0.935297

(0.028542)

0.103669

(0.003301)
16

SDAE - - - 0

Even taking into account that the experiments have not
been replicated and that a more sophisticated approach would
be required to compare the results, one can see that the use of
Deep Learning to predict the hourly average speed of the winds
in the Northeast of Brazil achieved at least relevant results,
even beating previous work in some performing measures.
Even the models without pre-training (and therefore not
classified as Deep Belief Nets or Stacked Denoising
Autoencoders) may be considered as part of DL architectures,
since they were trained with more than one hidden layer.

VI. CONCLUSIONS AND FUTURE WORKS

This work sought to investigate the use of Deep Learning to
predict the hourly average wind speed in northeastern Brazil.
The forecast of this information may economically impact the
region because it can provide a better scaling of resources in
wind power plants as well as more conventional energy

sources. Through the experiments and the analysis of the
results, it was found that the methodology used produced
models of neural networks with satisfactory performance in all
studied databases. In some of them the proposed experiment
showed the best results found in literature.

TABLE VII. COMPARISON WITH OTHER WORKS

Model
BJD SCR TRI

MAE MAPE MAE MAPE MAE MAPE

This work
0.5962

(MLP)

0.1120

(MLP)

0.6212

(DBN)

0.1222

(DBN)

0.8962

(DBN)

0.1012

(DBN)
RC-GA-I [29] 0.62 0.1208 0.63 0.1329 0.87 0.0986
RC-GA-II [29] 1.08 0.2027 1.23 0.2475 1.71 0.2063
RC-GA-III [29] 0.66 0.1247 0.70 0.1370 0.90 0.1023
RC-PSO [30] - 0.1783 - 0.1736 - 0.0853

Regarding the analyzed models, all of them had two hidden
layers, which can then be classified as Deep Learning. The pre-
training of weights, thus creating models like Deep Belief
Networks and Stacked Denoising Autoencoders, presented
different performances. DBN have obtained the best
performance and SDAE the worst. However, all models, when
compared with other works in literature, had relevant results.

A future work already underway is the combination of
different generated predictions. An example close to this idea
can be seen in [29]. Is this work, the authors combine several
outputs with a Suppport Vector Machine. Another point to be
investigated is the use of pre-training that would be more
focused on dynamic data such as Conditional RBM. Other
Deep Learning architectures can be tested.

Finally, the model parameters can be optimized by PSO or
GA. As can be seen in [29] and [30], good results can be
achieved when neural networks are optimized by this kind of
algorithm.

REFERENCES

[1] R. Bellman, "Dynamic programming and Lagrange multipliers."
Proceedings of the National Academy of Sciences of the United States
of America 42.10 (1956): 767.

[2] I. Arel, D. C. Rose, and T. P. Karnowski, "Deep machine learning-a new
frontier in artificial intelligence research [research frontier]."
Computational Intelligence Magazine, IEEE 5.4 (2010): 13-18.

[3] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John
Wiley & Sons, 2012.

[4] T. S. Lee, and D. Mumford, "Hierarchical Bayesian inference in the
visual cortex." JOSA A 20.7 (2003): 1434-1448.

[5] T. S. Lee, et al, "The role of the primary visual cortex in higher level
vision." Vision research 38.15 (1998): 2429-2454.

[6] Y. Bengio, "Deep learning of representations: Looking forward."
Statistical language and speech processing. Springer Berlin Heidelberg,
2013. 1-37.

[7] Y. Bengio, A. Courville, and P. Vincent. "Representation learning: A
review and new perspectives." Pattern Analysis and Machine
Intelligence, IEEE Transactions on 35.8 (2013): 1798-1828.

[8] Y. Bengio, "Learning deep architectures for AI." Foundations and trends
in Machine Learning 2.1 (2009): 1-127.

[9] Y. Bengio, Y. LeCun, "Scaling learning algorithms towards AI." Large-
scale kernel machines 34.5 (2007).

[10] P. E. Utgoff, D. J. Stracuzzi, "Many-layered learning." Neural
Computation 14.10 (2002): 2497-2529.

[11] Y. Bengio, et al, "Greedy layer-wise training of deep networks."
Advances in neural information processing systems 19 (2007): 153.

[12] H. Larochelle, et al, "Exploring strategies for training deep neural
networks." The Journal of Machine Learning Research 10 (2009): 1-40.

[13] G. Hinton, S. Osindero, and Y-W. Teh, "A fast learning algorithm for
deep belief nets." Neural computation 18.7 (2006): 1527-1554.

[14] F. Seide, L. Gang, and D. Yu, "Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks." Interspeech. 2011.

[15] D. C. Ciresan, et al, "Deep, big, simple neural nets for handwritten digit
recognition." Neural computation 22.12 (2010): 3207-3220.

[16] R. Collobert, et al, "Natural language processing (almost) from scratch."
The Journal of Machine Learning Research 12 (2011): 2493-2537.

[17] Y. Bengio, "Deep learning of representations for unsupervised and
transfer learning." Unsupervised and Transfer Learning Challenges in
Machine Learning, Volume 7 (2012): 19.

[18] R. Fildes, et al, "Forecasting and operational research: a review." Journal
of the Operational Research Society 59.9 (2008): 1150-1172.

[19] R. de Aquino, et al, "Recurrent neural networks solving a real large scale
mid-term scheduling for power plants." IJCNN. 2010.

[20] P. Dayan, et al, "The helmholtz machine." Neural computation 7.5
(1995): 889-904.

[21] G. Hinton, "Training products of experts by minimizing contrastive
divergence." Neural computation 14.8 (2002): 1771-1800.

[22] H. Bourlard, and Y. Kamp, "Auto-association by multilayer perceptrons
and singular value decomposition." Biological cybernetics 59.4-5
(1988): 291-294.

[23] P. Vincent, et al, "Extracting and composing robust features with
denoising autoencoders." Proceedings of the 25th international
conference on Machine learning. ACM, 2008.

[24] P. Romeu, et al, "Time-Series Forecasting of Indoor Temperature Using
Pre-trained Deep Neural Networks." Artificial Neural Networks and
Machine Learning–ICANN 2013. Springer Berlin Heidelberg, 2013.
451-458.

[25] T. Kuremoto, et al, "Time series forecasting using a deep belief network
with restricted Boltzmann machines." Neurocomputing 137 (2014): 47-
56.

[26] J. Chen, J. Qiongji, and J. Chao, "Design of Deep Belief Networks for
Short-Term Prediction of Drought Index Using Data in the Huaihe River
Basin." Mathematical Problems in Engineering 2012 (2012).

[27] J. Chao, F. Shen, and J. Zhao, "Forecasting exchange rate with deep
belief networks." Neural Networks (IJCNN), The 2011 International
Joint Conference on. IEEE, 2011.

[28] SONDA, Sistema de Organização Nacional de Dados Ambientais.
http://sonda.cptec.inpe.br/, May 2005.

[29] A. A. Ferreira, T. B. Ludermir, and R. De Aquino, "An approach to
reservoir computing design and training." Expert systems with
applications 40.10 (2013): 4172-4182.

[30] A. T. Sergio, Otimização de Reservoir Computing com PSO [Reservoir
Computing Optimization with PSO]. 2013. Dissertação (Mestrado em
Ciências da Computação [Master’s Thesis]) - Universidade Federal de
Pernambuco.

[31] X. Qiu, et al, "Ensemble deep learning for regression and time series
forecasting." IEEE SSCI 2014-2014 IEEE Symposium Series on
Computational Intelligence-CIEL 2014: 2014 IEEE Symposium on
Computational Intelligence in Ensemble Learning, Proceedings. Institute
of Electrical and Electronics Engineers Inc., 2015.

