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Abstract—Deep Learning is one of the latest approaches in 

the field of artificial neural networks. Since they were first 

proposed in mid-2006, Deep Learning models have obtained 

state-of-art results in some problems with classification and 

pattern recognition. However, such models have been little used 

in time series forecasting. This work aims to investigate the use of 

some of these architectures in this kind of problem, specifically in 

predicting the hourly average speed of winds in the Northeastern 

region of Brazil. The results showed that Deep Learning offers a 

good alternative for performing this task, overcoming some 

results of previous works. 

Keywords—deep learning; neural networks; time series 

forecasting; wind forecasting  

I. INTRODUCTION  

One of the main goals of the research in Artificial 
Intelligence is to emulate the efficiency and robustness with 
which the human brain interprets sensory input and processes it 
in a useful way for daily activities. During the more than 50 
years of studies in this field, various designs and architectures 
have been proposed, tested and used successfully in a practical 
way in several branches of knowledge. An example of these 
models is artificial neural networks, having the feed-forward 
network as their best-known architecture. However, all the 
proposed models undergo the so-called "curse of 
dimensionality" [1]. 

A possible solution to this problem is data pre-processing 
by reducing its dimensionality, usually performed by humans 
[2]. However, this solution can be challenging and highly 
dependent on the task [3]. Moreover, there is no evidence that 
the human brain processes similarly the vast amount of data to 
which it is exposed. This organ takes advantage of an intricate 
hierarchy of modules and, over time, learns to represent 
observations based on regularities that they exhibit. These 
findings were obtained through the work of Lee et al. [4] [5]. 
They studied how the visual cortex of the mammalian brain 
operates. The neocortex, for example, does not require pre-
processed sensory signals. 

Given to this scenario, it was developed a new subarea in 
artificial intelligence that dealt with computer models for 
information representation that exhibited characteristics that 
were similar to the ones of the neocortex. This subarea is often 
called Deep Learning (DL). The Deep learning algorithms can 
be considered as learning processes that find multiple levels of 

representation, and more abstract features of the data are 
represented by higher levels [6]. The more abstract 
representations can be more useful in extracting information 
for classifiers or predictors [7]. In addition to this, the learned 
intermediate characteristics can be shared among different 
tasks [8]. 

Over decades, many researchers have unsuccessfully tried 
to train neural networks with multiple deep layers [9] [10]. 
Networks were often trapped in local minima when initialized 
with random weights. As depth increased, a good 
generalization became even more difficult. Experiments have 
shown that the results of deep neural networks with randomly 
initialized starting weights obtain worse results than neural 
network with one or two hidden layers [11] [12]. In 2006, 
Hinton et al. found that the results of a deep neural network 
could be significantly improved when pre-trained with a non-
supervised learning algorithm, one layer after another, starting 
from the first layer [13]. This work booted the area now known 
as Deep Learning. At the beginning of the research in this 
subarea, in general, algorithms had the following 
characteristics: unsupervised learning of representations to pre-
train each of the layers; unsupervised training, one layer at the 
time, being the representation learned at each level the input to 
the next layer; using supervised training for fine tuning of all 
pre-trained layers, as well as one or more additional layers 
dedicated to the production of predictions. 

The models that make up Deep Learning can be applied in 
various problems, both in academy and in industry, i.e. in 
speech recognition and signal processing [14], object 
recognition [15], natural language processing [16] and transfer 
learning [17]. Even with some works available (reviewed in 
section III), the use of Deep Learning in time series forecasting 
has received less attention. A time series can be defined as a 
chronological sequence of observed data of any task or 
periodic activity in such fields as engineering, biology, 
economics or social sciences [18]. 

This study aims to investigate some of the Deep Learning 
models in wind speed forecasting in the northeastern region of 
Brazil. The prediction of these values can significantly reduce 
the operating difficulties in a wind power plant, as well as in 
traditional sources of energy, since it is possible to integrate 
efficient models of wind power generation forecasting with 
other electrical generation systems [19]. 



II. DEEP LEARNING 

A. Deep Belief Networks 

Deep Belief Networks (DBN) are neural networks that 
follow a generative probabilistic model, first introduced in 
[13]. Generative models provide a probabilistic distribution on 
data and labels, providing the estimation of P(Observation| 
Label) and P(Label|Observation). Discriminative models, like 
most conventional neural networks, only provide 
P(Label|Observation). DBN aim to mitigate some of the 
training problems of conventional neural networks: the need of 
much labeled data in the training set; slow training and 
inadequate learning techniques for selection parameters that 
lead to local minima. 

DBNs are based on Sigmoid Belief Networks, a generative 
multilayer neural network proposed before the appearance of 
Deep Learning, trained with variational approaches [20]. An 
example of a Sigmoid Belief Network can be seen in Figure 1. 
Network is represented as a directed graphical model and each 
random variable node is represented by directed arcs, 
indicating a direct dependence. The observed data is x and the 
hidden factors in the k level are the elements of vector h

k
. The 

parameterization of conditional distributions (in the downward 
direction) is similar to activation of conventional neuron 

networks, given by Equation 1.   
  is the binary activation of 

the hidden node i in layer k,    is the vector    
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The bottom layer generates a vector x in the input space. 
Considering multiple levels, the generative model of a Sigmoid 
Belief Network is given by Equation 2. 
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In this case, P(x) is intractable in practice, except in very 
small models. The upper layer is then factored given by 

       ∏     
   . 

Deep Belief Networks are quite similar to Sigmoid Belief 
Networks. In DBN, probabilities are given by components 
called Restricted Boltzmann Machines (RBM). Deep Belief 
Network architecture can be seen in Figure 2. 

RBM, represented in Figure 3, are non-directed graphical 
models without connections between nodes in the same layer. 
They are composed of input units (or visible) xj and hidden 
units hi, allowing the calculation of P(h|x) and P(x|h). An RBM 
is normally trained by a learning algorithm that trains each 
layer at a time in a greedy way, building more abstract 
representations of the original data through P(h

k
|x). Hinton 

called this algorithm Contrastive Divergence [21]. 

In comparison with other one layer models, RBM are more 
attractive as building blocks due to their easy training. 
According to the Contrastive Divergence algorithm, a vector v 
is presented to the visible units during the training phase. These 

values are propagated to the hidden units. On the other hand, 
the entries are stochastically calculated aiming at the 
reconstruction of the original data, through a process known as 
Gibbs Sampling. The correction of weights is given by the 
difference in the correlation of the hidden and visible entries 
activations. The training time is reduced considerably and each 
added layer increases the probability of obtaining the training 
data. 

 

Figure 1: Sigmoid Belief Network. 

 

Figure 2: Deep Belief Network. 

 

After this pre-training, DBN may admit fine tuning for 
better discriminative performance. The adjustment is 
accomplished by the use of labeled data and another training 
algorithm, such as the well-known backpropagation. In this 
case, a set of labels is attached to the upper layers of the 
network. 

 

Figure 3: Restricted Boltzmann Machine. 

B. Stacked Autoencoders 

Autoencoders are a type of neural network also known as 
Diabolo networks [22]. Overall, training a self-encoder is 
easier than training an RBM. Self-encoders have been used as 
building blocks in Deep Learning architectures, in which each 
level is trained separately [11]. 



An autoencoder is trained for encoding an input x for some 
representation c(x) so that it can be reconstructed from this 
representation. The decoding function f(c(x)) gives the 
reconstruction of the network, usually a vector of numbers 
obtained through a sigmoid. The expectation is for c(x) to be a 
distributed data representation that captures the main factors of 
variations. 

According to [8], the procedure to train Stacked 
Autoencoders is similar to the process performed in Deep 
Belief Networks: (i) Train the first layer as an autoencoder in 
order to minimize the reconstruction error of the original input, 
in an unsupervised way. (ii) The outputs of the hidden units are 
used as inputs for another layer, also trained as an autoencoder. 
These two steps do not require labeled data. (iii) Iterate step 
two to boot the desired number of additional layers. (iv) Use 
the output of the last hidden layer as input for a supervised 
layer and randomly initialize its parameters or use it in a 
supervised manner. (v) Perform fine-tuning of all parameters of 
this deep architecture through a supervised criterion. 
Alternatively, fold all autoencoders on a very deep autoencoder 
and perform fine-tuning  in the overall reconstruction error. 

The idea is that autoencoders must have low reconstruction 
error in the training examples, but high reconstruction error in 
most other configurations. Autoencoders can be regularized to 
avoid simply learning the identity function. An example is the 
so-called Denoising Auto-Encoders [23] that uses versions of 
the input data with noise. The model used in this work is 
known as Stacked Denoising Auto-Encoders (SDAE). 

III. DEEP LEARNING FOR TIME SERIES FORECASTING  

Deep Learning models were originally used in 
classification and pattern recognition problems. After that, such 
models started to be applied in various machine learning tasks, 
among which, time series forecasting. Although literature has 
some works on DL with series (some of them reviewed below), 
there are still no conclusive results about the role of pre-
training on this model and the relationship between 
architecture and the dimensionality of the data. The 
dimensionality is usually provided by the lags of the time 
series. 

Romeo et al. [24] used deep neural networks to predict 
temperatures series. The authors used Stacked Denoising 
Autoencoders as pre-training. The experiment took into 
account the fine tuning that occurred only in the last layer or in 
all network layers. The performance was improved when 
compared to systems without pre-training, but not as much as 
in other types of problems. This could be justified by the 
characteristic of the series used and the low-dimensional data. 

Kuremoto et al. [25] used an only one hidden layer Deep 
Belief Network to predict a competition time series. According 
to the authors' experiments, the performance of DBN was 
better than the one of models such as MLP (Multilayer 
Perceptron), Bayesian learning and ARIMA. In DBN, 
performance was improved with the use of differential data. 
The hyperparameters model (lag of the time series, the number 
of neurons in the hidden layer and learning rates) was 
optimized by PSO (Particle Swarm Optimization). Despite 

having only one layer, the model is considered deep learning 
by having pre-training. 

Chen et al. [26] also used a Deep Belief Net to forecast a 
series containing drought index data in an Asian river basin. As 
DBN component, the authors used an RBM for continuous data 
(CRBM). Unlike the previous model, network was built with 
two hidden layers. The results were better than in a common 
MLP. 

Chao et al. [27] used a DBN to predict a time series of 
exchange rate. In this case, CRBM were also used as building 
blocks of the model. The results were better than in the feed 
forward architectures. 

IV. CASE STUDY 

Several parameters can directly influence the outcome of 
the forecast. Therefore, a strategy for the selection of these 
parameters is required. At this work, the following parameters 
were varied by a ramdom grid search: the number of neurons in 
the input layer of the network, the number of neurons in the 
first hidden layer, the number of neurons in the second hidden 
layer and whether there is or not any type of pre-training. 

A time series may be formalized as a sequence of scalar 
random observations                    . The lag of the 
series is given by the delay used to form the network training 
and testing data. Then, time series forecasting means predict a 
future value of the sequence, given by 
  ̅                                . d is the lag, k is the step 

lag and F, in this work, is the neural network. 

The number of neurons in the network input layer is related 
to the time series lag. The number of hidden layers and the 
number of neurons in each of them are associated with the 
complexity of the model, since it increases the number of free 
parameters. The fewer free parameters, the easier it is to train 
the model. The more complex the network, the greater is the 
risk of overfitting. This work has chosen to use two hidden 
layers in the network, since algorithms and architectures of 
Deep Learning are used. 

In order to investigate the use of Deep Learning approaches 
in time series forecasting series, two types of pre-training were 
used in the experiment. In the first case, each of the layers was 
considered to be an autoencoder and noise was added to the 
input data, characterizing the model known as Stacked 
Denoising Autoencoders (SADE). In another approach, each of 
the layers was considered a Restricted Boltzmann Machine, 
characterizing the model known as Deep Belief Network 
(DBN). Depending on how the parameters were selected, some 
networks were trained without any pre-training, and could, 
thus, be considered a common MLP. The aim was to verify 
whether it would be worth carrying out the pre-training or not.  

Three time series of the SONDA project [28] were used. 
The SONDA project keeps free databases of solar and wind 
energy resources in Brazil. They are: 

 Belo Jardim (BJD): City in the state of Pernambuco. 
Series with 13176 patterns consisted of hourly 
average speed of wind obtained from the wind power 



plant of Belo Jardim, from  July 1, 2004 to December 
31, 2005. 

 São João do Cariri (SCR): City in the state of Paraíba. 
Series with 17520 patterns consisted of hourly 
average speed of wind obtained from the wind power 
plant of São João do Cariri, from January 1, 2006 to 
December 31, 2007. 

 Triunfo (TRI): City in the state of Pernambuco. Series 
with 21936 patterns consisted of hourly average speed 
of wind obtained from the wind power plant of 
Triunfo, from July 1, 2004 to December 31, 2006. 

Figure 4 shows the methodology used in this case study. 

The values for n, h1 and h2 were defined empirically after 
exhaustive testing. The performance used for the selection of 
the best networks in the training phase is the mean square error 
(MSE), given by equation 3. 
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In equation 3, P is the number of patterns in the data set, N 
is the number of output units of the network and     and     are 

respectively the desired output value and the value calculated 
by the i-th neuron of the output layer. In this experiment, N is 
given by 1, because it is a problem of time series prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: Methodology of Case Study  

 
To evaluate the network in the testing phase and in order to 

measure performance, besides using the MSE, the mean 
absolute error (MAE) and the percentage of absolute error 
(MAPE) were also used. MAE and MAP are given respectively 
by equations 4 and 5.  
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V. RESULTS AND DISCUSSION 

Next, the results will be shown and discussed. Table I 
presents the configuration and performance of the top 20 
systems created for the series of Belo Jardim (BJD). Table II 
shows the mean and standard deviations in the performance of 
each approach at a test database. The best results are 
highlighted. 

One can see that the best system was generated by an 
architecture without any kind of pre-training. On average, the 
performance of the MLP model was better. However, this 
comparison between the means must be made carefully, 
because the number of systems created with each of the 
possible architectures varies widely. An achievement of the 
Deep Learning approaches was the fact of having generated 
more systems among the top 20, 17 DBN models and 1 SDAE 
models.  

TABLE I.  20 BEST SYSTEMS CREATED FOR BJD 

Model N h1 h2 MSE MAE MAPE 

DBN 50 50 75 0.666960 0.626273 0.120186 

DBN 25 25 25 0.681332 0.633652 0.120052 

SDAE 25 25 25 0.711954 0.653798 0.122903 

MLP 25 25 50 0.638798 0.617384 0.115075 

DBN 25 25 50 0.681478 0.639206 0.122665 

DBN 50 75 50 0.648109 0.620767 0.119127 

DBN 25 75 75 0.678515 0.635774 0.120895 

DBN 25 25 75 0.670442 0.630098 0.119028 

DBN 50 25 75 0.678035 0.635109 0.120006 

DBN 100 25 25 0.661876 0.628315 0.120674 

DBN 25 50 25 0.672718 0.629412 0.118400 

DBN 75 25 50 0.675832 0.635165 0.120369 

DBN 50 50 50 0.664829 0.627536 0.119125 

DBN 25 50 50 0.670523 0.627389 0.117496 

DBN 50 75 25 0.644938 0.619416 0.117406 

DBN 25 75 50 0.677723 0.636206 0.120341 

DBN 25 50 75 0.711025 0.648855 0.123957 

DBN 50 25 50 0.678427 0.631983 0.121384 

MLP 25 75 25 0.599255 0.596238 0.112018 

DBN 25 75 25 0.681167 0.639159 0.121880 

TABLE II.  MEAN AND STANDARD DEVIATION FOR BJD 

Model MSE MAE MAPE Quantity 

MLP 
0.619027 

(0.027961) 
0.606811 

(0.014953) 
0.113546 

(0.002162) 
2 

DBN 
0.673172 

(0.014611) 

0.632019 

(0.007177) 

0.120176 

(0.001719) 
17 

SDAE 
0.711954 

(0.000000) 
0.653798 

(0.000000) 
0.122903 

(0.000000) 
1 

 

1. Select database. db = [BJD, SCR, TRI] 

2. Define the possible values for the number of input 

neurons. n = [25, 50, 75, 100, 125, 150] 

3. Define the possible values for the number of 

neurons in the first hidden layer. h1 = [25, 50, 75, 

100] 

4. Define the possible values for the number of 

neurons in the second hidden layer. h2 = [25, 50, 

75, 100] 

5. Define the type of pre-training. pt = [MLP (without 

pre-training), DBN, SDAE].  

6. Using training database (75% of full database), 

execute 100 training runs randomly selecting one 

of the possible values for each parameter (n, h1, 

h2, pt). The pre-training, if any, is performed on all 

layers, except the output layer. Fine tuning is 

performed with Levenberg-Marquadt algorithm. 

7. Select the 20 models with better performance in 

training phase. 

8. Using the test database (25% of full database), 

check the performance of selected models. 



Following the same idea, tables III and IV show the results 
for the series of São João do Cariri (SCR). Then the tables V 
and VI do the same for the series of Triunfo (TRI). 

One can see that, in SCR database, systems with pre-
training have obtained the best performance taking into 
consideration all the error measures. Regarding the average 
performance, DBN was better with MAE and MLP with 
MAPE and MSE. However, just one MLP was in the best 
systems set, against 19 DBN. It is worth to note that no SDAE 
was in the best group.  

TABLE III.  20 BEST SYSTEMS CREATED FOR SCR 

Model n h1 h2 MSE MAE MAPE 

DBN 50 50 75 0.685671 0.640265 0.126682 

DBN 25 25 25 0.662088 0.626428 0.123490 

DBN 50 75 75 0.692896 0.646241 0.134538 

DBN 75 75 25 0.694653 0.642838 0.137266 

DBN 25 25 50 0.662638 0.630890 0.128272 

DBN 50 25 75 0.688955 0.643765 0.126561 

DBN 25 75 75 0.680738 0.637218 0.126756 

DBN 25 25 75 0.662190 0.630120 0.122203 

DBN 75 50 50 0.684201 0.640217 0.134845 

DBN 50 25 50 0.690305 0.643674 0.133328 

DBN 25 50 25 0.649658 0.621233 0.127053 

DBN 50 25 25 0.671109 0.632003 0.136889 

MLP 25 50 50 0.676899 0.638682 0.126585 

DBN 25 50 50 0.667266 0.631705 0.126921 

DBN 75 25 25 0.687672 0.637887 0.133360 

DBN 75 50 25 0.684736 0.635869 0.127056 

DBN 25 50 75 0.680012 0.639830 0.123427 

DBN 25 75 50 0.666790 0.629922 0.125876 

DBN 50 75 25 0.675534 0.635686 0.129938 

DBN 100 75 75 0.687922 0.643723 0.138402 

TABLE IV.  MEAN AND STANDARD DEVIATION FOR SCR 

Model MSE MAE MAPE Quantity 

MLP 
0.676899 

(0.000000) 

0.638682 

(0.000000) 

0.126585 

(0.000000) 
1 

DBN 
0.677633 

(0.012804) 

0.636290 

(0.006776) 

0.129624 

(0.005062) 
19 

SDAE - - - 0 

 

For the Triunfo time series, the best performance according 
to the MSE, MAE and MAPE was achieved by the DBN 
models. As in the other two databases, most of the best systems 
were DBN, without any SDAE. The top 20 set contained 4 
MLP. With respect to the average performance, better 
approach came from the DBN models according to all error 
measures.  

Although in the BJD series the best performance was 
achieved by an architecture without any kind of pre-training, 
one can see that among the systems created for all databases, 
the DBN model has outperformed the others approaches in the 
vast majority of cases according to all error measures. So we 
can infer that, to predict the wind speed in the databases 
studied, the DBN model would be the best choice. Also, it is 
possible to conclude that in these same conditions, the model 
with worst performing would be SDAE. This Deep Learning 
architecture just figured once among the best systems created, 
in BJD series. 

All tested systems had two hidden layers. Some time ago, 
this would be an impediment for numerical simulations. But 
with the growth of computing power, to train neural networks 
with more than one hidden layer is not as expensive as it once 
was. If caution is taken to avoid overfitting, the gain in adding 
another hidden layer can directly impact the performance of the 
systems. This can be proved when the results of this study are 
compared with other forecasts performed for these same 
weather series. Table VII compares the best performance of the 
models tested in this article with two similar approaches using 
Reservoir Computing optimization with evolutionary 
algorithms, one with Genetic Algorithm (GA) and another one 
with PSO (Particle Swarm Optimization). 

TABLE V.  20 BEST SYSTEMS CREATED FOR TRI 

Model n h1 h2 MSE MAE MAPE 

MLP 25 25 25 1.941906 1.021253 0.110764 

DBN 25 25 25 1.551106 0.951877 0.106038 

DBN 50 75 25 1.496886 0.921589 0.100605 

MLP 25 25 50 1.828327 1.023901 0.115217 

DBN 25 25 50 1.575730 0.954733 0.105676 

DBN 50 25 50 1.482294 0.926188 0.103646 

DBN 100 75 50 1.521698 0.923593 0.102849 

DBN 25 25 75 1.463582 0.909818 0.100964 

DBN 50 50 50 1.635742 0.969299 0.104607 

DBN 75 50 50 1.516546 0.930249 0.103804 

DBN 50 75 75 1.509517 0.928221 0.102806 

DBN 25 75 75 1.764116 1.001344 0.108077 

MLP 25 50 50 1.754493 1.004082 0.110033 

DBN 25 50 50 1.463823 0.911560 0.100764 

MLP 25 75 50 1.735531 0.997910 0.107941 

DBN 50 75 50 1.421144 0.898138 0.098984 

DBN 25 50 75 1.563875 0.952422 0.105285 

DBN 100 75 25 1.601268 0.966846 0.112077 

DBN 50 25 25 1.488428 0.922586 0.101310 

DBN 75 25 25 1.408690 0.896288 0.101205 

TABLE VI.  MEAN AND STANDARD DEVIATION FOR TRI 

Model MSE MAE MAPE Quantity 

MLP 
1.815064 

(0.093558) 

1.011787 

(0.012758) 

0.110989 

(0.003062) 
4 

DBN 
1.529028 

(0.087889) 

0.935297 

(0.028542) 

0.103669 

(0.003301) 
16 

SDAE - - - 0  

 

Even taking into account that the experiments have not 
been replicated and that a more sophisticated approach would 
be required to compare the results, one can see that the use of 
Deep Learning to predict the hourly average speed of the winds 
in the Northeast of Brazil achieved at least relevant results, 
even beating previous work in some performing measures. 
Even the models without pre-training (and therefore not 
classified as Deep Belief Nets or Stacked Denoising 
Autoencoders) may be considered as part of DL architectures, 
since they were trained with more than one hidden layer. 

VI. CONCLUSIONS AND FUTURE WORKS 

This work sought to investigate the use of Deep Learning to 
predict the hourly average wind speed in northeastern Brazil. 
The forecast of this information may economically impact the 
region because it can provide a better scaling of resources in 
wind power plants as well as more conventional energy 



sources. Through the experiments and the analysis of the 
results, it was found that the methodology used produced 
models of neural networks with satisfactory performance in all 
studied databases. In some of them the proposed experiment 
showed the best results found in literature. 

TABLE VII.  COMPARISON WITH OTHER WORKS 

Model 
BJD SCR TRI 

MAE MAPE MAE MAPE MAE MAPE 

This work 
0.5962 

(MLP) 

0.1120 

(MLP) 

0.6212 

(DBN) 

0.1222 

(DBN) 

0.8962 

(DBN) 

0.1012 

(DBN) 
RC-GA-I [29] 0.62  0.1208  0.63  0.1329 0.87  0.0986 
RC-GA-II [29] 1.08  0.2027 1.23  0.2475 1.71  0.2063 
RC-GA-III [29] 0.66  0.1247 0.70  0.1370 0.90  0.1023 
RC-PSO [30] - 0.1783 - 0.1736 - 0.0853 

 

Regarding the analyzed models, all of them had two hidden 
layers, which can then be classified as Deep Learning. The pre-
training of weights, thus creating models like Deep Belief 
Networks and Stacked Denoising Autoencoders, presented 
different performances. DBN have obtained the best 
performance and SDAE the worst. However, all models, when 
compared with other works in literature, had relevant results. 

A future work already underway is the combination of 
different generated predictions. An example close to this idea 
can be seen in [29]. Is this work, the authors combine several 
outputs with a Suppport Vector Machine. Another point to be 
investigated is the use of pre-training that would be more 
focused on dynamic data such as Conditional RBM. Other 
Deep Learning architectures can be tested. 

Finally, the model parameters can be optimized by PSO or 
GA. As can be seen in [29] and [30], good results can be 
achieved when neural networks are optimized by this kind of 
algorithm. 
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