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Compact evolutionary algorithms have proven to be an efficient alternative for 
solving optimization problems in computing environments with little processing 
power. In this kind of solution, a probability distribution simulates the behavior 
of a population, thus looking for memory savings. Several compact algorithms 
have been proposed, including the compact genetic algorithm and compact 
differential evolution. This work aims to investigate the use of compact 

approaches in other important evolutionary algorithms: evolution strategies. 
This paper proposes two different approaches for compact versions of evolution 
strategies. Experiments were performed and the results analyzed. The results 
showed that, depending on the nature of problem, the use of the compact version 
of Evolution Strategies can be rewarding. 
 

   

1 Introduction 

According to IDC (International Data 

Corporation), sales of embedded computer 

systems generate more than US$1 trillion in 
revenue annually. And this sum will double 

over the next four years. The Intelligent 

Systems, which are a part of the embedded 

systems, will be representing more than one 

third of the volume of all embedded systems by 

2015 and will be capturing more than 75% of 

the revenue. [IDC 2015] 

A major constraint of embedded systems is the 

need of operation with little power 

consumption. The increase in the technology of 

processors, disks, memory, and communication 
has highlighted that the capacity of batteries is 

not following the growth of other technologies 

used in embedded systems [PARADISO, J. et 

al. 2005]. 

In many real-world applications, an 

optimization problem must be solved even in 

situations where massive computational power 

is not available due to cost limitations and/or 

space. This is a typical situation in robotics, 

process control problems and embedded 

systems. To overcome these adversities, a 
proposed solution has been the development of 

Compact Evolutionary Algorithms (cEAs). 

Compact evolutionary algorithms belong to the 

category of Estimation of Distribution 

Algorithms (EDAs) [LARRAÑAGA, J. et al. 

2002]. In this class of algorithms, a population 

is not stored and processed. To continue the 

optimization process a static representation of 

individuals is used. This feature allows a 

smaller number of parameters stored in the 

memory, so that this implementation requires 
less storage space when compared to standard 

evolutionary algorithms. 

Several cEAs have been proposed, including the 

Compact Genetic Algorithm (cGA) [HARIK, J. 

et al. 1999] and the Compact Differential 

Evolution (cDE) [MININNO, J. et al. 2011]. 

Although Evolution Strategy (ES) solutions are 

widely used, no compact version has been 

proposed for these algorithms. This study 

proposes two versions of compact development 

strategies, c(1 + 1)-ES and c(μ, λ)-ES. The main 

objective is to investigate the use of compact 
approaches of this classic algorithm through the 

analysis of results obtained in benchmark 

databases. 
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This paper is organized as follows: in session 

two, an overview of the compact algorithms and 

evolution strategies used as the basis for the 

approaches proposed in this paper is presented. 

Session three describes the algorithms c(1+1)-

ES and c(μ, λ)-ES and discusses its operating 
principles and details. Session four shows the 

numerical results and is divided into two parts: 

the results of the algorithm (1 +1)-ES when 

compared with no compact version of it, and the 

results of c (μ, λ)-ES, with their proper 

comparisons. The conclusions and suggestions 

for future work are in section five. 

2 Background 

A. Compact Algorithms 

 
Compact algorithms are estimates of 

distribution algorithms that mimic the behavior 

of a population base by means of a probable 

representation of the population of candidate 

solutions. These algorithms have a similar 

behavior in respect to the algorithms based on 

the population, but require a much smaller 

memory [MININNO, J. et al. 2011]. 

The first CEA proposed was the compact 

genetic algorithm (cGA) introduced in [HARIK, 

J. et al. 1999]. The cGA simulates the behavior 

of a genetic algorithm (GA) with binary 
encoding [HOLLAND, J. et al. 1975]. In 

[HARIK, J. et al. 1999] a cGA performance, 

almost as good as the GA one, can be seen. As 

expected, the main advantage of a cGA with 

respect to a standard GA is the memory savings. 

In the cGA, a binary vector of length n is 

generated randomly assigning probability of 0.5 

for each gene that can be of values 0 or 1. This 

vector that describes the probabilities initialized 

with n values equal to 0.5 is called Probability 

Vector (PV). 
Through the PV, two individuals are chosen and 

their fitness values are calculated. The top 

solution, the solution characterized for higher 

performance, changes the PV based on a 

parameter called virtual Np, population. More 

specifically, if the winning solution in their gene 

i position is of value 1, while the loser solution 

is of value 0 in the same position, the 

probability value at position i of the PV is 

increased by 
1

𝑁𝑝
. Otherwise, PV is reduced by 

1

𝑁𝑝
. If genes at i position exhibit the same value 

for both, for the winner and for the loser, the 

probability of  PV at position i is not modified. 
The version on which this study is based, the 

compact genetic algorithm for real values 

(cGAr), was introduced in [MININNO, J. et al. 

2011]. The cGAr is a compact algorithm 

inspired by cGA exporting compact logic to a 

domain of real values, obtaining an optimization 

algorithm with a high performance, despite the 

limited amount of memory. In cGAr the PV is 

not a vector, but a n × 2 matrix: 

 𝑃𝑉𝑡 = [𝜇𝑡 , 𝜎𝑡] (1) 

Where μ and σ are, respectively, the vectors 

containing, for each design variable, mean and 
standard deviation of a probability distribution 

of  Gauss’ function truncated within the range [-

1,1]. At the beginning of the optimization 

process, for each variable i, μ¹[i] = 0 and σ¹[i] = 

λ, the λ is a large positive constant (λ = 10). The 

initialization values of σ[i] are made to simulate 

a uniform distribution. Subsequently, an 

individual is chosen as elite. A new individual is 

generated and compared with the elite. As the 

cGA in the victorious cGAr solution also 

changes the bias of PV. The update rule for each 
element of μ is given by: 

 𝜇𝑡+1[𝑖] =  𝜇𝑡[𝑖] +  
1

𝑁𝑝
(𝑤𝑖𝑛𝑒𝑟[𝑖] −

 𝑙𝑜𝑠𝑒𝑟[𝑖])   

(2) 

Where Np is the population size.  The update 

rule for σ is: 

  (𝜎𝑡+1[𝑖])2  =  (𝜎𝑡[𝑖])2 + (𝜇𝑡[𝑖])2

− (𝜇𝑡+1[𝑖])2 

+  
1

𝑁𝑝
(𝑤𝑖𝑛𝑛𝑒𝑟[𝑖]2 − 𝑙𝑜𝑠𝑒𝑟[𝑖]2)   

(3) 

μ is the mean of PV, σ is the standard deviation 

of PV, winner is the step of mutation that 

generated the best individual, and loser is the 

step of mutation that generated the worst 

individual. 

Other compact versions of genetic algorithms 

can be found in literature. In [SASTRY, J. et al. 

2000], the Extended Compact Genetic 

Algorithm (ecGA) was proposed. In ecGA, the 
probability distribution used is a class of models 

known as marginal probability model product. 

A hybrid version of ecGA with the Nelder-

Mead algorithm can be seen in [SASTRY, J. et 

al. 2001] and the study of its scalability is 
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shown in [SASTRY, J. et al. 2007]. 

Additionally, a memetic variant was presented 

in [BARAGLIA, J. et al. 2001], with the aim of 

increasing the convergence of the algorithm in 

the presence of a large number of dimensions. 

The various compact versions of genetic 
algorithms have been used in practical 

applications implemented in hardware, in which 

the computer resources can be smaller 

[APORNTEWAN, J. et al. 2001] 

[JEWAJINDA, J. et al. 2008]. 

With similar ideas to compact genetic 

algorithms, [MININNO, J. et al. 2011] presents 

a compact version of the differential evolution 

called cDE. In differential evolution, a set of 

vector parameters is randomly generated early 

in the process, covering the entire search space. 
The algorithm then recombines these vectors in 

order to minimize or maximize an objective 

function. The compact version of the differential 

evolution was applied to a case study related to 

the online training, a neural network 

implemented directly on a microcontroller. The 

numerical and experimental results confirmed 

the efficiency of the proposed algorithm. 

 

B. Evolution Strategies 

 

Evolution Strategies (ES) are a subclass of 
direct search algorithms based on nature and 

belonging to the class of evolutionary 

algorithms [EIBEN, J. et al. 2003]. ES use 

mutation, recombination and selection applied 

to a population of individuals containing 

candidate solutions in order to find better 

solutions iteratively. The algorithm was first 

proposed in 1974 [SHWEFEL, J. et al. 1974]. 

An evolutionary algorithm is usually described 

according to characteristics such as 

representation of individuals, recombination and 
mutation types and parent selection. Next, each 

of these features will be discussed. 

ES are typically used for continuous 

optimization problems. The standard 

representation of individuals is given by a real 

vector x1, ..., xn, where each xi is a variable 

floating point. However, most modern ES 

algorithms use this vector only as a part of the 

genotype. Individuals may contain some 

strategy parameters influencing directly the 

mutation operation. Thus, the genotype can be 

completely defined by (x1, ..., xn,, σ1, ..., σnσ, α1, 

..., αnα). 

The mutation operation is based on a normal 

distribution that requires the parameters: mean 

and standard deviation. In general, the engine 

uses a value for adding a noise, formed from 
this distribution. This value is called the step 

size of mutation, a part of the genotype to 

evolve. The operation of mutation can be 

accomplished in several ways. Below is a 

description of the mechanisms used in this 

work. 

In non-correlated with one step, a single value 

per subject is calculated by multiplying this 

value by a lognormal distribution mutation. 

Below, the update equations: 

 𝜎′ = 𝜎 ∗ exp(𝜏 ∗ 𝑁(0, 1)) (4) 

 𝑥𝑖
′ = 𝑥𝑖 + 𝜎′ ∗ 𝑁(0, 1) (5) 

σ is the mutation step, xi a gene of the genotype 

and τ a learning rate, usually proportional to 

1/n1/2. The mutation step is the same in each 

direction. 

In non-correlated mutation with n steps, there is 
a mutation step for each gene. The equations are 

as follows: 

 𝜎𝑖
′ = 𝜎𝑖 ∗ exp(𝜏′ ∗ 𝑁(0, 1) +  𝜏

∗  𝑁𝑖 (0, 1)) 

(6) 

 𝑥𝑖
′ = 𝑥𝑖 + 𝜎𝑖

′ ∗ 𝑁𝑖(0, 1) (7) 

In this case, τ’ is the global learning rate, the 

same for all individuals. τ is the specific 

learning rate, allowing the mutation in many 

directions. The first one is proportional to 
1/(2n)1/2 and the second one to 1/(2n1/2)1/2. 

In the recombination of evolution strategies, two 

parents generate a son. Acting for position, the 

recombination may be intermediate or discrete. 

In the intermediate recombination, the children 

are formed by averaging the values of the 

parents. In the discrete recombination, the son is 

generated by selecting the gene of one parent, 

from a probability distribution. The strategy 

parameters (mutation) are typically recombined 

in an intermediate manner, while the objective 
parameters (genes) are recombined discretely 

[EIBEN, J. et al. 2003]. Recombination also 

differs with respect to the parents used: two 

parents previously selected to generate a child 

or two different parents for each position. 

The parents are selected from a random uniform 

distribution. Thus, each individual has the same 
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probability of being selected, regardless of their 

fitness. 

The classic versions of ES coexist with more 

modern versions. One of these newer algorithms 

is the Covariance Matrix Adaptation Evolution 

Strategy (CMA-ES) [HANSEN, J. et al. 2006].  
In this algorithm, the dependencies between 

variables in the probability distribution are 

represented by a covariance matrix. The CMA-

ES takes this matrix into account when 

performing the adjustment operations. 

3 Compact Evolution 
Strategies 

In the following session, the two proposed 
versions for compact development strategies 

will be presented. Basically, they differ in the 

representation of the population. 

 

A. c(1+1)-ES algorithm 

 

Since the evolution strategies were first 

proposed, several approaches were investigated 

by varying parameters such as the type of 

mutation and the organization of the population. 

Another important change is the mechanism of 
selection of the survivors. In general, these 

different mechanisms are known as (μ, λ) and (μ 

+ λ). µ is the population size in a given iteration 

(the parents) and λ the offspring size. The first 

mechanism indicates that the population of the 

next iteration will not take into account the 

parents, and is therefore a non-elitist approach. 

In the second case, the next iteration population 

will be composed of both, the parents and the 

offspring. 

In the approach known as (1+1)-ES, the 
population is made up of only two individuals 

who are being adapted along the algorithm 

execution. It suggests a compact version for this 

approach and does not provide memory-saving 

therefore. But the c(1+1)-ES (compact version 

of (1+1)-ES) was proposed to investigate the 

use of compact approaches in a simpler 

algorithm evolution strategy, checking that its 

performance is acceptable. 

The proposed algorithm is performed following 

the sequence of steps in Figure 1. 

 

 
Fig. 1. c(1+1)-ES algorithm 

 

Differently from conventional strategy, (1+1)-

ES, the initialization of individuals with this 

approach uses a probability vector. This PV 

stores the mean and standard deviation that is 
used to generate the values of the genes of the 

individuals. This approach uses the PV to 

induce individuals to be generated in a 

promising area of the search space. At the end 

of each generation, the PV is updated according 

to the equations described in the rcGA 

algorithm (equations 2 and 3). 

In conventional (1+1)-ES, the subjects are 

randomly generated by a normal distribution of 

average 0 and standard deviation 1, leaving at 

total random the value of the gene. By 
comparing these approaches, one can see that 

the compact version is more likely to generate 

more fit individuals. Over time, the generation 

of individuals is directed to a promising area 

and does not move randomly. 

The two approaches differ, as mentioned above, 

in generation of individuals and use of PV. 

Other operators such as mutation, 

recombination and the evaluation function of 

fitness to each individual are equal. 

 

B. c(µ, λ)-ES algorithm 
 

Eiben and Smith [EIBEN, J. et al. 2003] 

indicate that the mechanism that is not elitist in 

survivors’ selection is the most widely used and 

offers the best results. According to these 

authors, (μ, λ) should be preferable because it’s 

better in leave local optimum and move to 
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promising regions, since it discards all parents 

and does not preserve outdated solutions. 

Additionally, by using the mechanism (μ + λ), 

bad mutation values may persist in the 

population for a long time. 

Given to these issues, this paper also proposes 
an algorithm that investigates the use of 

compact approaches in (μ, λ)-ES. This approach 

will be called c(μ, λ)-ES. 

The algorithm c(μ, λ)-ES is inspired in the rcGA 

and cDE to give to (μ, λ)-ES a compact 

treatment. Figure 2 shows a general scheme for 

the application of c(μ, λ)-ES. Then, the 

description of the algorithm. 

 

 
Fig. 2. c(µ, λ)-ES algorithm 

 

First the PV is initialized with a mean and 

standard deviation. The average is generated 

from a uniform probability distribution between 

a lower and upper limit for each goal function. 

These limits are defined empirically. The 
standard deviation is generated from a normal 

distribution N(0, 1). The elite individual is also 

generated from a uniform distribution between 

the lower and upper limits of the objective 

function. The same logic is applied to the PV of 

mutation steps and elite mutation. The 

difference is in the limits. The mutation is given 

by -1 to 1 and in c(μ, λ)-ES the mutation 

approach is not correlated with the n steps. 

After initialization of these vectors, the 

iterations are initiated corresponding to the 

number of generations. In each generation, the 
first step is to perform population 

recombination. Following the characteristics of 

rcGA and cDE, two parents are sampled from 

the population PV. The current individual is 

generated from the combination of these two 

parents. The combination may be intermediary 

or discrete. Then, similar logic is used for the 

generation of the current vector changes. Two 

parents are sampled from the PV mutations and 

recombined intermediate or discreetly. 

At this generation point, the algorithm takes into 

memory a current individual and a vector of 
current mutation steps. Following the standard 

update rules of Evolution Strategies, the 

individual is mutated by the mutation current 

vector changes and the elite mutations vector. 

The current individual is updated by the best 

individual generated from these two mutations, 

and this information is used to update the PV 

mutations. The update is similar to what occurs 

in c(1 + 1)-ES, given by equations one and two. 

After changing the current individual and the 

update of PV mutation steps, there is a 
competition between this individual and the 

elite individual. The result of this competition 

influences the population of PV update, again 

according to equations 1 and 2. All these 

operations are performed until the maximum 

number of generations is reached. 

4 Results 

To validate the results, the proposed algorithms 

were compared with respective non-compact 

versions. The c (1 + 1) -ES was compared with 

the (1 + 1) -ES and c (μ, λ) -ES was compared 
with the (μ, λ) -ES. The comparison was made 

by using the best fitness values achieved by 

algorithms in 10 functions. The functions used 

were, each one with dimension n = 2 : Beale, 

Booth, Dixon, Griewank, Hump, Levy, Matyas, 

Rastrigin, Rosenbrock, Sphere [http://www-

optima.amp.i.kyoto-

u.ac.jp/member/student/hedar/Hedar].  

To confer statistical validity to the comparisons, 

the Wilcoxon test was used after 30 runs, with a 

confidence level of 95%. In the tables showing 
the results of statistical tests, "+" indicates the 

case when the compact algorithm has overcome 

the traditional version at given function; an "=" 

indicates that the difference between the results 

is statistically irrelevant and, therefore, the 

algorithms have the same performance; a "-" 

indicates that the traditional version surpassed 

the compact approach. 
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A. c(1+1)-ES algorithm 

 

This session presents the results achieved by the 

algorithm c (1 + 1) -ES, the comparison with the 

original algorithm (1 + 1) -ES and the statistical 

test results to verify if the results are statistically 
equivalent. The compact algorithm was 

equivalent to conventional (1 + 1)–ES.  

An adapted strategy of not correlated mutation 

with mutation step 1 was used. In the compact 

approach, each individual gene has a σ 

representing the mutation step for that gene. The 

conventional approach uses a σ for all the same 

individual genes. Next, the parameters of each 

algorithm: 

 (1+1)-ES: µ = 1; λ = 1; generations = 

100; population recombination = 
intermediate; mutation = adapted 

version of not correlated mutation with 

one mutation step. 

 c(1+1)-ES: PV for individuals 

generations µ = 1; λ = 1; generations = 

100; population recombination = 

intermediate; mutation = adapted 

version of not correlated mutation with 

one mutation step. 

Table I shows mean and standard deviations of 

the best fitnesses achieved by individuals. One 

can see that the values are very similar in the 
two approaches. 

Table II shows the validation of the results 

using the Wilcoxon test. One can see that in 

most of the functions the algorithms are 

equivalent. Also, in the Rastrigin function, the 

compact algorithm fared better. In the Matyas 

function, the compact algorithm was overcome 

by the traditional version. 

In general, the results were statistically similar. 

Confirming that the first compact approach has 

equivalent performance to the conventional 
version, the next section shows the results for 

the compact version of a more sophisticated 

evolution strategy algorithm. 
 

Function (1+1)-ES C(1+1)-ES 

Beale 0.004880 

(0.026282) 

0.009391 

(0.050574) 

Booth 0.003839 

(0.020678) 

0.006861 

(0.036951) 

Dixon 0.029809 

(0.160531) 

0.002496 

(0.013441) 

Griewank 4.4862E-4 0.001237 

(0.002415) (0.006662) 

Hump 0.001659 

(0.008939) 

0.004053 

(0.021828) 

Levy 5.8960E-4 

(0.003175) 

0.001608 

(0.008660) 

Matyas 2.3911E-4 

(0.001287) 

5.0806E-4 

(0.002736) 

Rastrigin 0.040865 

(0.220068) 

0.008293 

(0.044663) 

Rosenbrock 0.001090 

(0.005870) 

0.010790 

(0.058107) 

Sphere 2.2695E-4 

(0.001222) 

0.001001 

(0.005390) 

   

Table. 1. Mean of best fitnesses 

 

 

Function 
(1+1)-ES vs. 

c(1+1)-ES 

Beale = 

Booth = 

Dixon = 

Griewank = 

Hump = 

Levy = 

Matyas - 

Rastrigin + 

Rosenbrock = 

Sphere = 

  

Table. 2. Wilcoxon test for validation 

 

B. c(µ, λ)-ES algorithm 
 

This session presents the results achieved by c 

(μ, λ) -ES and a comparison with the traditional 

version of the algorithm. For the traditional 

version of the algorithm, two sets of parameters 

were tested. The following parameters were 

selected according to indications of previous 

work or empirically. Next, the set of parameters 

used. 

 (µ, λ)-ES-1: µ = 10; λ = 10; generations 

= 100; population recombination = 

discrete; mutation steps recombination 
= intermediate; lower limit for mutation 

step = -1; upper limit for mutation step 

= 1. 

 (µ, λ)-ES-2: µ = 10; λ = 20; generations 

= 100; population recombination = 

discreta; mutation steps recombination 

= intermediate; lower limit for mutation 

step = -1; upper limit for mutation step 

= 1. 
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 c(µ, λ)-ES: generations = 100; 

population recombination = discreta; 

mutation steps recombination = 

intermediate; lower limit for mutation 

step = -1; upper limit for mutation step 

= 1. 
Table III shows the mean of best fitnesses 

achieved by the algorithms in each tested 

function, in 30 runs. In brackets, standard 

deviation values are shown. Table IV shows the 

statistical comparison between (μ, λ) -ES-1 and 

c (μ, λ) -ES and, similarly, a comparison 

between (μ, λ) -ES-2 and c (μ, λ )-ES. 
 

Function (µ, λ)-ES-1 (µ, λ)-ES-2 c(µ, λ)-ES 

Beale 0.105397 

(0.216403) 

0.065293 

(0.218540) 

0.685472 

(1.703286) 

Booth 3.873424 

(5.991175) 

0.000698 

(0.000756) 

0.029533 

(0.023305)
 

Dixon 0.286664 

(0.525051) 

0.000639 

(0.000761) 

0.017207 

(0.019740) 

Griewank 0.461445 

(0.265004) 

0.255029 

(0.264967)
 

0.660719 

(0.668455) 

Hump 0.218676 

(0.377594) 

0.000641 

(0.000499) 

0.052358 

(0.145693) 

Levy 0.007013 

(0.010092) 

0.005408 

(0.018034) 

0.114306 

(0.430628) 

Matyas 0.092499 

(0.162598) 

0.000033 

(0.000048) 

0.001468 

(0.002028) 

Rastrigin 2.310114 

(1.650039) 

0.175241 

(0.186175) 

2.321291 

(1.428543) 

Rosenbrock 0.849357 

(1.187724) 

0.033554 

(0.066951) 

1.174561 

(2.063353) 

Sphere 0.063853 

(0.086762) 

0.000170 

(0.000170) 

0.007260 

(0.007272) 

    

Table. 3. Mean of best fitnesses 

 

By analyzing the tables, one can see that the 

proposed compact approach outperformed 

traditional ES in the first set of parameters, μ = 

10 and λ = 10, in half of the test functions. In 

the other half, the difference was statistically 

irrelevant. In addition to the gain in the best 

fitness, it should be noted that the expected gain 
were due to the characteristics of a compact 

algorithm. The memory savings are evident, 

since in c μ, λ)-ES the population is stored in a 

vector n x 2, being n the function dimension. 

However, it is well known and it has been found 

empirically that performance of the (μ, λ)-ES 

approach can improve. The most 

straightforward idea to improve fitness is to 

increase the population size. Eiben and Smith 

[EIBEN, J. et al. 2003] indicate that the (μ, λ) 

approaches of evolution strategies improve 

significantly when λ> μ. This is precisely the 

characteristic of the approach (μ, λ)-ES-2, 

where λ = 20 and μ = 10. As expected, the 

performance improved significantly and c(μ, λ)-
ES could not overcome the traditional ES with 

this set of parameters in any of the tested 

functions. 

 

Function 
(µ, λ)-ES-1 vs.  

c(µ, λ)-ES 

(µ, λ)-ES-2 VS. 

 C(µ, λ)-ES 

Beale = - 

Booth + - 

Dixon + - 

Griewank = -
 

Hump + - 

Levy = - 

Matyas + - 

Rastrigin = - 

Rosenbrock = - 

Sphere + - 

   

Table. 4. Wilcoxon test for validation 

 

Taking into account the results obtained in the 

tested functions, one can infer that the 

performance of a non-compact approach tends 

to be better than the compact approach when the 

appropriate parameters are used. This behavior 

is expected since the compact approaches are 

inclined to lose performance due to probability 

vector usage rather than storage of population in 

memory. The advantage of the compact 

approach, as found empirically is to save 
memory. But even when compared with the 

approach (μ, λ)-ES-1 using a population size of 

10, the performance of c(μ, λ)-ES was superior. 

5 Conclusions and Future 
Works 

This work introduced the concept of compact 

evolution strategy and proposed two variants of 
algorithms, C (1 + 1) -ES and the C (μ, Λ) -ES. 

Both variants do not require powerful hardware 

in order to exhibit a high performance. On the 

contrary, the proposed algorithms make use of a 

limited amount of memory in order to perform 

optimization. 

The algorithm c(1 + 1)-ES proved to be equal to 

(1 + 1)-ES original, thus validating the use of a 
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probability vector. c(μ, λ)-ES version, however, 

showed that its performance is lower when the 

(μ, λ)-ES uses a high λ value, i.e., generates a 

lot of chromosomes during playback and uses a 

large amount of memory. Nevertheless, on those 

occasions when the compact version has lower 
performance, there is a great saving of memory, 

showing the usefulness of compact algorithm 

when there are few computing resources and the 

solution found does not need to be the best. 

A possible future work would be the 

implementation of the evolution strategy with 

correlated mutation and its comparison with 

other algorithms already proposed in this article. 

In a comparison with other studies and 

literature, algorithms must also be taken into 
account. Another important point would be the 

application of this algorithm in a real 

implementation problem in hardware, 

reinforcing its advantage in memory economy.
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