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Abstract. Reservoir Computing is a new paradigm of artificial neural networks 
that has obtained promising results. However there are some disadvantages: the 
reservoir is created randomly and needs to be large enough to be able to capture 
all the features of the data. We propose a method to optimize the initial 
parameters using PSO – Particle Swarm Optimization. Our method took until 
10.25% of the time required for exhaustive search and some approaches got no 
error statistically worse than others method tested for all databases used.  
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1   Introduction 

PSO (Particle Swarm Optimization) is an optimization algorithm that has some 
advantages over other global search techniques. The algorithm is based on the social 
behavior of flocks of birds: a population of solutions is maintained and each 
individual seeks to improve its performance based on its best experience and the best 
experience of the group. In general, their operators are fast, its implementation is 
simple and its convergence is relatively fast. 

In this work, we intend to show how the PSO and two extensions of this algorithm 
can work on Reservoir Computing optimization. 

Reservoir Computing (RC) is a recent paradigm of Artificial Neural Networks. RC 
uses a similar architecture of Recurrent Neural Networks (RNN) for temporal 
processing without the need for training. RC was introduced parallel and 
independently as Liquid State Machine (LSM) [1] and Echo State Network (ESN) [2] 
a few years ago. In general, the concept of RC is based on building a random RNN 
(reservoir), without changing the weights. After this phase, a linear regression 
function is used to train the system output. Schrauwen et al [3] show that the 
transformation nonlinear dynamics offered by the reservoir is sufficient for the output 
layer, called readout, be able to extract the output signals using a simple linear 
mapping. Promising results in using Reservoir Computing is shown in [3] and [4]. 

Several parameters influence the efficiency of the RC, for example, the number of 
nodes used and the type of activation function. Setting these parameters without any 
indication of problem behavior is difficult, and the use of an optimization algorithm to 
accomplish this task can be of great importance. Ferreira e Ludermir [5] show 



interesting results regarding the use of Genetic Algorithms for optimization of certain 
parameters of Reservoir Computing. 

All computations with Reservoir Computing in this paper used a Matlab toolbox 
available in [6]. 

2   Reservoir Computing 

Reservoir Computing is a recent paradigm of artificial neural networks developed 
independently as Liquid State Machine [1] and Echo State Network [2]. In common, 
all the Reservoir Computing approaches have the feature of using the computational 
power of recurrent neural networks without the need of train this architecture. The 
weights are set randomly in the reservoir at the beginning of the process and 
unmodified. In general, a readout function is used to train the network output. The 
readout is a function that does linear regression of the input signals using, for 
example, pseudo-inverse. Fig. 1 shows a diagram of a simple Echo State Network. 

 
Fig. 1. Basic ESN architecture used is this work. 

  
In the diagram, the ESN has M input units, N internal PEs and L output units. The 

value of the input unit at time n is u(n), of internal units are x(n), and output units are 
y(n). 

As explained in the figure, the layer named as reservoir receives signal values 
coming from the input layer. The reservoir, with a certain number of processing units, 
is designed with recurrent connections. The weights of these connections are random 
and do not change. The readout layer then does a simple linear mapping of the 
reservoir output. The dotted lines represent connections that can be trained and shaded 
lines indicate optional connections.  



3   PSO – Particle Swarm Optimization 

PSO is a global optimization technique based on a population of solutions. In general, 
the algorithm is based on the social behavior of flocks of birds, where an individual 
mimics the actions of the group's best (or most suitable). The process starts with 
defining the population of solutions. Each individual, named particle, is a possible 
solution. Each particle has a position and speed, and the update process is based on its 
best experience and the best experience of the group. PSO was created by Kennedy 
and Eberhart in 1995 [7]. 

Let s be the size of the swarm, n the dimension of the problem and t the present 
time. Each particle 1 ≤ i	 ≤ s has a position x୧(t) ∈	ℝ୬  in the solution space and a 
speed v୧(t) ∈	ℝ୬, that controls the magnitude and direction of movement. Each 
particle keeps the best individual position y୧(t) ∈ 	ℝ୬ visited up to time t. On the 
other hand, the whole swarm keeps in memory the best position yො(t) ∈ 	ℝ୬ visited so 
far by each particle. 

Throughout the algorithm, the speed of each particle is guided by two variables, or 
search points: the best individual position visited so far (the optimization  cognitive 
term, y୧(t)) and the global best position visited so far (the optimization social term, 
yො(t)). Mathematically, the new velocity of each particle is given by equation 1, while 
equation 2 determines its new position. 
 

ݐ)௜௝ݒ + 1) = (ݐ)௜௝ݒݓ + 	ܿଵݎଵ ቀݕ௜௝(ݐ)−	ݔ௜௝(ݐ)ቁ+ 	 ܿଶݎଶ ቀݕො௝(ݐ)−	ݔ௜௝(ݐ)ቁ 
1 ≤ ݅	 ≤ ,ݏ 1 ≤ ݆	 ≤ ݊                                         (1) 
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1 ≤ ݅	 ≤ ,ݏ 1 ≤ ݆	 ≤ ݊ 
(2) 

 
 
The momentum term (or inertia), w, causes a more exploratory search in the first 

iterations and higher level of exploitation in recent iterations. This variable is a scalar 
that usually decreases linearly from 0.9 to 0.4. The variables rଵ and rଶ are uniform 
random variable ranging from 0 to 1 and are related to two terms in equation 
(cognitive and social). The values cଵ and cଶ are the coefficients of individual and 
local acceleration, respectively.  

Although the standard PSO and several variations of the original algorithm have 
been developed and applied in a wide range of optimization problems, solving 
problems of high complexity with efficient search and fast convergence has been one 
of the challenges in this research area. It is based on this background that the EPUS-
PSO (Efficient Population Utilization Strategy for PSO) [12] was introduced, seeking 
to improve these aspects in the original algorithm. Thus, the EPUS-PSO is based on 
three concepts: Population Management (the population size is variable), Solution 
Sharing (the particles can acquire knowledge of other individuals) and Search Range 
Sharing (disturbs the solutions and opens the range of possibilities in the search). 

The APSO [13] was also developed with the aim of increasing the search 
efficiency and speed of convergence of the original PSO algorithm. Basically, the 
APSO consists of two main steps. First, the algorithm identifies the course of its 



execution, by evaluating the distribution of population and fitness function of each 
particle, in which four states of the evolutionary generation of solutions is: 
exploration, exploitation, convergence or jump out. Through this knowledge, there is 
automatic control of some variables of the algorithm, as the term of inertia and 
acceleration coefficients. The second step concerns an elitist learning strategy (ELS) 
that is activated when the state is classified as evolutionary convergence. 

To classify the evolutionary state of generation, the APSO uses the approach 
known as ESE (Evolutionary State Estimation), based on search behavior and 
population distribution of solutions of the PSO. 

4   PSO for Reservoir Computing Optimization 

Reservoir Computing, as well as other architectures of neural networks, suffer from 
certain disadvantages that come with the ability of connectionist systems to learn 
from examples and generalize the information absorbed. Among these, it is the 
heuristic way how techniques such as intelligent computing tend to be seen. In 
general, there are no rules for defining the network configuration which best applies 
to a particular problem in order to achieve better results. Included in this 
configuration, also related to the volume of input data for training, is the definition of 
the initial parameters of the network. 

Some studies have built Hybrid Intelligent Systems that combine neural networks 
with optimization algorithms. Yamazaki used Tabu Search, Simulated Anealing and 
Backpropagation to optimize the weights of a neural network Multi-layer Perceptron 
[15]. More recently, Zanchetin proposed a global and local optimization method 
combining Tabu Search, Simulated Anealing, Backpropagation and Genetic 
Algorithms [16]. Other algorithms have been used: Carvalho did an analysis of neural 
network MLP optimization by particles swarms [17]. 

Regarding the use of Intelligent Hybrid Systems with Reservoir Computing as one 
of the techniques involved, some recent work can be cited. In [18] and [19], Ferreira 
and Ludermir used an evolutionary approach to optimize RC. Using Genetic 
Algorithms to find the best configuration of the initial parameters of the network, the 
results with the genetic search proved to be 20% faster than exhaustive search. 

Given this research interest in the field of Intelligent Computing and Intelligent 
Hybrid Systems, this work investigates the impact of using the particle swarm 
optimization algorithm to find the best configuration of Reservoir Computing initial 
parameters. The use of PSO in order to optimize the RC results is unprecedented. 

5   Results 

Based on [5], the following parameters were used in the experiments: number of 
processing units in the reservoir; activation function in the reservoir; spectral radius of 
the reservoir weight matrix; interconnection between the input and output layers and 
feedback connection in the output layer. 



To investigate the most convenient way to find the best set of global parameters of 
the RC, the experiments are also composed of an exhaustive search phase of these 
variables best settings. Thus, the work will seek to compare the results obtained 
through these two ways to search for the best global parameters: exhaustive search 
algorithm and use of particle swarm optimization.  

In PSO algorithm, there are the concepts of particle (a single solution) and a 
population of particles (a set of solutions). By using this optimization algorithm, it is 
necessary to define the representation of the solution. In the simulations, also based 
on [5], a particle p is encoded by a vector composed by: N – number of node in the 
reservoir (100 to 280); nf – node activation function in the reservoir (Logistic or 
Hyperbolic Tangent); sr – spectral radius (0.75 to 0.95); io – interconnection among 
the input and output layers (yes or no) and oo – feedback connection in the output 
layer (yes or no).  

A particle is then defined by p = (N, nf, sr, io, oo). The fitness function for each 
particle is the test error of cross validation using Reservoir Computing. 

To compare the efficiency of the methods, we used the MSE (Mean Squared Error) 
of the prediction of time series in a cross-validation with 10 partitions. Using the 
method of cross-validation, the number of partitions is an important parameter to be 
defined. Cross-validation with 10 partitions has been shown to be an appropriate 
value for most problems [21].  

In the exhaustive search for optimal parameters of Reservoir Computing for 
particular databases, the MSE is calculated on each iteration. Thus, the number of 
training cycles will be given by the number of parameter settings desired for the 
purposes of search. The use of PSO and its extensions in order to optimize the search 
aims to reduce the number of training cycles. With less training cycles, the search is 
performed more quickly. Thus, the number of training cycles of each method to 
achieve the optimum initial parameters of Reservoir Computing is also an important 
approach for comparison. 

In exhaustive search, a combination of these parameters was used so that the 
number of training cycles was set at 400. The number of cycles of training in the use 
of PSO and its extensions is variable according to the algorithm is running. 

For the experiments, we used as databases the following time series: memory test 
series (MEMTEST), Narma order 10 series (NARMA-10), Narma order 30 
(NARMA-30), Mackey-Glass mean chaos (MG-15) and Mackey-Glass moderate 
chaos (MG-30). Table 1 shows the results of each database in the approaches 
previously presented. 

Table 2 shows the comparison between models according to the Student's t test at 
5% significance (95% confidence). In this table, the "=" sign indicates that the null 
hypothesis was not rejected (the difference between the mean errors is not statistically 
significant) and the models have the same performance. The sign "<" indicates that 
the null hypothesis was rejected and that the models for comparison has 
underperformed selection and, finally, the ">" indicates that the null hypothesis was 
rejected and that the models can outperform selection. 

The PSO approach was the only one that did not get any results statistically inferior 
to another method in any of the databases. This approach achieved better results than 
the other in at least one of the databases: better performance than the EPUS-PSO in 



NARMA-10 and NARMA-30 and better performance than the APSO and exhaustive 
search in the NARMA-30 database. 

Table 1.  MSE and training cycles number for databases. 

Approach MSE Training cycles 
number 

MEMTEST   
  Exhaustive Search 1.0864e-004 (7.6551e-05) 400 
  PSO 1.0551e-004 (7.3068e-005) 111 
  EPUS-PSO 1.3474e-004 (1.0202e-004) 41 
  APSO 1.4486e-004 (1.4082e-004) 120 
NARMA-10   
  Exhaustive Search 2.3951e-004 (7.9916e-005) 400 
  PSO 1.6205e-004 (7.0374e-005) 111 
  EPUS-PSO 3.8978e-004 (3.5512e-005) 43 
  APSO 2.3504e-004 (3.7616e-005) 120 
NARMA-30   
  Exhaustive Search 0.0011 (8.5697e-005) 400 
  PSO 1.3143e-004 (8.2053e-005) 111 
  EPUS-PSO 0.0011 (7.9712e-005) 41 
  APSO 0.0010 (6.4345e-005) 120 
MGS-15   
  Exhaustive Search 3.9498e-005 (4.6705e-005) 400 
  PSO 3.9438e-005 (4.6859e-005) 111 
  EPUS-PSO 3.9035e-005 (4.6296e-005) 41 
  APSO 3.8633e-005 (4.4524e-005) 120 
MGS-30   
  Exhaustive Search 2.5548e-005 (4.4150e-005) 400 
  PSO 3.9491e-005 (4.4763e-005) 111 
  EPUS-PSO 5.8780e-005 (4.2976e-005) 43 
  APSO 2.6114e-005 (4.4859e-005) 120 

 
One explanation for the similarity of the results over the test set error is the search 

space of the variables that sought to optimize. This search space was previously 
defined. Also, the optimization algorithms had routines to prevent it from exceeding 
its range initially set. Additionally, the PSO obtain better results than its extensions 
(which were originally developed to improve the original algorithm) can be explained 
by the nature of the problem in question. The experiments sought to optimize the 
initial parameters of Reservoir Computing, which depend on each problem and the 
experience of the examiner. The EPUS-PSO and APSO also have this characteristic: 
there is a need to define more than the initial parameters of the original PSO 
algorithm and their values are also defined in a heuristic way. In the experiments 
presented in this section, the initial parameters of the algorithm EPUS-PSO and 
APSO were those suggested by the work that gave rise to such extensions of PSO [12] 
[13]. 

PSO, APSO and PSO-EPUS obtained the best results according to the criterion of 
training cycles required to achieve the optimum values. The number of training cycles 
is closely linked with the runtime of the algorithms of the proposed methods. Thus, 



we can conclude that the use of particle swarm optimization to obtain the optimum 
initial parameters of a Reservoir Computing has come to require only 10.25% of the 
time required by exhaustive search of these parameters. 

Table 2.  Comparison between models according to the Student’s T test at 5% significance. 

Approach/Database MT N-10 N-30 MGS-15 MGS-30 
PSO      
  EPUS-PSO = > > = = 
  APSO   = = > = = 
  ES = = > = = 
EPUS-PSO      
  APSO = < = = = 
  ES = < = = = 
APSO      
  ES = = = = = 

7   Conclusions and Future Works 

Considering the two ways to compare methods (test set error and number of training 
cycles needed), the method performed better in the experiments was the PSO. This 
approach took 27.75% of the time required for exhaustive search and got no error test 
statistically worse than any other method tested for all databases. 

In the other hand, when in a certain application the execution time is more critical 
than the performance of the algorithm itself, the best result was achieved by using the 
EPUS-PSO. This method took up 10.25% of the time required for exhaustive search 
and obtained statistically similar test error in three of the five databases used. 

As future works, we propose: to use a greater number of databases and compare the 
results with similar approaches for Reservoir Computing optimization; to expand the 
search space and obtain results statistically more reliable and to study the possibility 
of using other parameters for optimization. 
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